

7 September, 2012

Regulatory Division

Re: NCIRT Review and USACE Approval of the Jacobs Ladder Mitigation Plan (SAW 2012-01007)

Ms. Suzanne Klimek North Carolina Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Dear Ms. Klimek:

The purpose of this letter is to provide the North Carolina Ecosystem Enhancement Program (NCEEP) with all comments generated by the North Carolina Interagency Review Team (NCIRT) during the 30-day comment period for the Jacobs Ladder Mitigation Plan, which closed on 23 August, 2012. These comments are attached for your review.

Based on our review of these comments, we have determined that no major concerns have been identified with the Draft Mitigation Plan. However, the minor issues with the Draft discussed in the attached comments must be addressed in the Final Mitigation Plan.

The Final Mitigation Plan is to be submitted with the Preconstruction Notification (PCN) Application for Nationwide permit approval of the project along with a copy of this letter and a summation of the comments addressed. If it is determined that the project does not require a Department of the Army permit, you must still provide a copy of the Final Mitigation Plan, along with a copy of this letter, to the appropriate USACE field office at least 30 days in advance of beginning construction of the project. Please note that this approval does not preclude the inclusion of permit conditions in the permit authorization for the project, particularly if issues mentioned above are not satisfactorily addressed. Additionally, this letter provides initial approval for the Mitigation Plan, but this does not guarantee that the project will generate the requested amount of mitigation credit. As you are aware, unforeseen issues may arise during construction or monitoring of the project that may require maintenance or reconstruction that may lead to reduced credit.

Thank you for your prompt attention to this matter, and if you have any questions regarding this letter, the mitigation plan review process, or the requirements of the Mitigation Rule, please call us at 919-846-2564.

Sincerely,

Tyler Crumbley Regulatory Specialist

Enclosures

Electronic Copies Furnished:

NCIRT Distribution List CESAW-RG/McLendon CESAW-RG-A/Kichefski Michael McDonald, NCEEP Deborah Daniel, NCEEP

DEPARTMENT OF THE ARMY WILMINGTON DISTRICT, CORPS OF ENGINEERS 69 DARLINGTON AVENUE WILMINGTON, NORTH CAROLINA 28403-1343

CESAW-RG/Crumbley

August 24, 2012

MEMORANDUM FOR RECORD

SUBJECT: NCIRT Comments During 30-day Mitigation Plan Review

Purpose: The comments listed below were posted to the NCEEP Mitigation Plan Review Portal during the 30-day comment period in accordance with Section 332.8(g) of the 2008 Mitigation Rule.

NCEEP Project Name: Jacobs Ladder Stream Mitigation Site (EEP-IMS# 95023), Rowan County, NC

USACE AID#: SAW 2012-01007

30-Day Comment Deadline: August 23, 2012

1. 8/22/2012- N.C. Division of Water Quality; Eric Kulz:

No comments or concerns regarding this property, pending a site visit by DWQ (Alan Johnson - MRO), along with a visit to Jacob's Landing.

2. 8/23/2012- U.S. Environmental Protection Agency; Jeffrey Garnett:

I would like to reiterate comments that I made on the Jacob's Landing bank: The plan calls for some reconstructed culverted crossings. I request that the Provider submit detailed plans of culvert installations that adequately ensure that passage for aquatic life is achievable. Additionally, one of the goals of the project is to "reduce the sediment supply entering Irish Buffalo Creek." Monitoring channel forms over the first five years of the bank only serves as a surrogate that sediment loads are decreasing. The assumption is being made that improving the channel will reduce sediment loads, but no quantifiable way to test this is being presented. The Provider should develop a quantifiable plan to directly measure success of the project goal. For example, simple turbidity measurements could be taken on a regular basis (during base flows and bank full events) both upstream and downstream of the site. These measurements should be taken before restoration, during restoration, and for a minimum of five years postrestoration in order to document achievement of the goal.

- 3. 8/23/2012 U.S. Army Corps of Engineers; Tyler Crumbley and Todd Tugwell:
 - a. Please ensure that the performance standards for channel dimension [(as described in Sections 9 and 10 of the document (pgs. 35-38)], are in accordance with the 2003 Stream Mitigation Guidelines (1 cross-section per 20 bankfull width lengths) and that the performance standard for Bed Materials is instituted to show a change to a predetermined desired composition, rather than purely an evaluation of sediment transport.
 - b. Section 9.0, pg. 35 reads: "The purpose of monitoring..." please change to "The purpose of geomorphological monitoring ..."
 - c. Section 9.0, pg. 36, vegetation: Please add "planted, living stems per acre." Also, please remove the year 4 performance standard of 288 stems per acre.
 - d. Site Plan and Profile, (sheet 11 of 23), Sta. 119+25: A 50' crossing is proposed. Please ensure that all crossings on the project are wide enough to allow for future planned uses on the property, including any municipal or DOT mandated road widths, if anticipated.

FINAL MITIGATION PLAN

Jacob's Ladder Stream Restoration Site Rowan County, North Carolina EEP Contract 003983

Yadkin-Pee Dee River Basin Cataloging Unit 03040105

Prepared for:

NC Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

September 2012

FINAL MITIGATION PLAN

Jacob's Ladder Stream Restoration Site Rowan County, North Carolina EEP Contract 003983

> Yadkin-Pee Dee River Basin Cataloging Unit 03040105

> > Prepared for:

NC Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

KCI Associates of North Carolina, PA 4601 Six Forks Rd, Suite 220 Raleigh, NC 27609 (919) 783-9214

September 2012

EXECUTIVE SUMMARY

This mitigation plan has been written in conformance with the requirements of the following:

- Federal rule for compensatory mitigation project sites as described in the Federal Register Title 33
- Navigation and Navigable Waters Volume 3 Chapter 2 Section § 332.8 paragraphs (c)(2) through (c)(14).
- NCDENR Ecosystem Enhancement Program In-Lieu Fee Instrument signed and dated July 28, 2010

These documents govern NCEEP operations and procedures for the delivery of compensatory mitigation.

The Jacob's Ladder Stream Restoration Site is a full-delivery mitigation project being developed for the North Carolina Ecosystem Enhancement Program (EEP). The site offers the opportunity to restore and enhance a series of headwater tributaries to Irish Buffalo Creek. This project will return these tributaries to a stable stream ecosystem, lower the sediment supply entering Irish Buffalo Creek, and reduce incoming nutrients from livestock. This project also looks to expand aquatic and terrestrial habitat in the Rocky River Watershed (03040105). The project is located in the Irish Buffalo Creek Drainage (03040105020040), which the EEP has identified as a Targeted Local Watershed (TLW).

The project goals address stressors identified in the TLW and include the following:

- Restore a diverse riparian corridor that connects forested stream systems upstream and downstream of the project.
- Reduce the sediment supply entering Irish Buffalo Creek.

The project goals will be addressed through the following objectives:

- Restore stable channel planforms to streams that have been straightened and modified.
- Reshape and stabilize eroding stream banks.
- Plant the site with native trees to help reestablish a diverse riparian corridor.
- Install exclusion fencing and alternative watering options to keep livestock out of the project streams.

The majority of the site is currently used for pasture. Past anthropogenic modifications have involved logging, grazing, and channelization. Three separate streams make up the site: (T1) begins in the northwestern project corner, Tributary 1A (T1A) is a tributary to T1, joining T1 from the east; and Tributary 2 (T2) enters the site from the northeastern corner. Both T1 and T2 flow to the south and join Irish Buffalo Creek along the southern property boundary.

The mitigation approach for the Jacob's Ladder Stream Restoration Site will focus on repairing isolated sections of bed degradation and bank erosion in the enhancement reaches and restoring the unstable reaches that have been straightened or severely degraded by cattle. Once site grading is complete, the stream buffers will be planted as Piedmont Alluvial Forest (Schafale and Weakley 1990). The site will be monitored for five years or until the success criteria are met.

Reach	Mitigation Type	Priority Approach	Existing Linear Footage	Designed Linear Footage	Mitigation Units	
T1-1	Restoration	P1	587	739	739	
T1-2	Restoration	P1	1,592	1,622*	1,622	
T2-1	Enhancement I	-	837	750*	500	
T2-2	Restoration	P1	1,246	1,334*	1,334	
T1A-1	Enhancement I	-	306	306	204	
T1A-2	Enhancement II	-	140	140	56	
T1A-3	Restoration	P1	470	498	498	
	Total Stream Enhancement I1,1431,056					
	Total Stre	am Enhancement II	140	140	56	
	Total	Stream Restoration	3,895	4,193	4,193	
	То	tal Mitigation Units			4,953	

Table 1. Jacob's Ladder Stream Restoration Site - Mitigation Summary

*Mitigation units have been calculated to exclude the easement exceptions and water utility easements.

TABLE OF CONTENTS

1.0	RESTORATION PROJECT GOALS AND OBJECTIVES	1
2.0	SITE SELECTION	1
2.1	Directions	1
2.2	Site Selection	1
2.3	Vicinity Map	3
2.4	Watershed Map	4
2.5	Soil Survey	5
2.6	Current Condition Plan View	6
2.7	Historical Condition Plan View	7
2.8	Site Photographs	9
3.0	SITE PROTECTION INSTRUMENT	13
3.1	Site Protection Instrument Summary Information	13
3.2	Site Protection Instrument Figure	13
4.0	BASELINE INFORMATION	14
4.1	Watershed Summary Information	15
4.2	Geology and Soils Information	15
4.3	Reach Summary Information	15
4.4	Regional Curve Discharge	21
4.5	Wetland Summary Information	
4.6	Regulatory Considerations	22
5.0	DETERMINATION OF CREDITS	23
6.0	CREDIT RELEASE SCHEDULE	23
7.0	MITIGATION WORK PLAN	24
7.1	Target Stream Type and Plant Communities	24
7.2	Design Parameters	25
7.3	Data Analysis	
7.4	Reference Streams	27
7.5	Sediment Transport Analysis	34
7.6	Proposed Mitigation Plan View	
8.0	MAINTENANCE PLAN	35
9.0	PERFORMANCE STANDARDS	35
10.0	MONITORING REQUIREMENTS	
11.0	LONG-TERM MANAGEMENT PLAN	38
12.0	ADAPTIVE MANAGEMENT PLAN	38
13.0	FINANCIAL ASSURANCES	38
14.0	OTHER INFORMATION	39
14.1	Definitions	39
14.2	References	40

TABLES

Table 1. Jacob's Ladder Stream Restoration Site - Mitigation Summary	ii
Table 2. Project Information	14
Table 3. BEHI Data	18
Table 4. Bankfull Discharge	19
Table 5. Determination of Credits	
Table 6. Morphological Design Criteria	29
Table 7. Sediment Analysis	
Table 7. Sediment Analysis	32

APPENDICES

Appendix A. Conservation Easement (Preliminary) Appendix B. Baseline Information Data Appendix C. Mitigation Work Plan Data and Analyses Appendix D. Project Plan Sheets

1.0 **RESTORATION PROJECT GOALS AND OBJECTIVES**

EEP develops River Basin Restoration Priorities (RBRPs) to guide its restoration activities within each of the state's 54 Cataloging Units (CUs). RBRPs delineate specific watersheds that exhibit both the need and opportunity for wetland, stream and riparian buffer restoration. These watersheds are called Targeted Local Watersheds (TLWs) and receive priority for EEP planning and restoration project funds.

The 2009 Lower Yadkin Pee-Dee RBRP identified population growth, urban stormwater and agricultural activities as major stressors within the 8-digit Cataloging Unit (03040105). Overall watershed restoration goals for this CU include management of stormwater runoff and protection of aquatic habitat for rare species (NCDENR, EEP 2009).

The 2009 Lower Yadkin Pee-Dee RBRP identified HUC 03040105020040 (Irish Buffalo Creek) as a Targeted Local Watershed. Major stressors identified within the 46-square mile Irish Buffalo Creek TLW include animal operations and impervious cover. Reduction of sediment inputs and protection of Water Supply Waters serving the City of Kannapolis are primary goals of any stream restoration efforts undertaken within this TLW (NCDENR. EEP 2009). The Jacob's Ladder Stream was identified as a stream restoration opportunity to restore and enhance headwater streams within the TLW by addressing some of the local watershed stressors.

The project goals address stressors identified in the TLW and include the following:

- Restore a diverse riparian corridor that connects forested stream systems upstream and downstream of the project.
- Reduce sedimentation of Irish Buffalo Creek from the project site

The project goals will be addressed through the following objectives:

- Restore stable channel planforms to streams that have been straightened and modified.
- Reshape and stabilize eroding stream banks.
- Plant the site with native trees to help reestablish a diverse riparian corridor.
- Install exclusion fencing and alternative watering options to keep livestock out of the project streams.

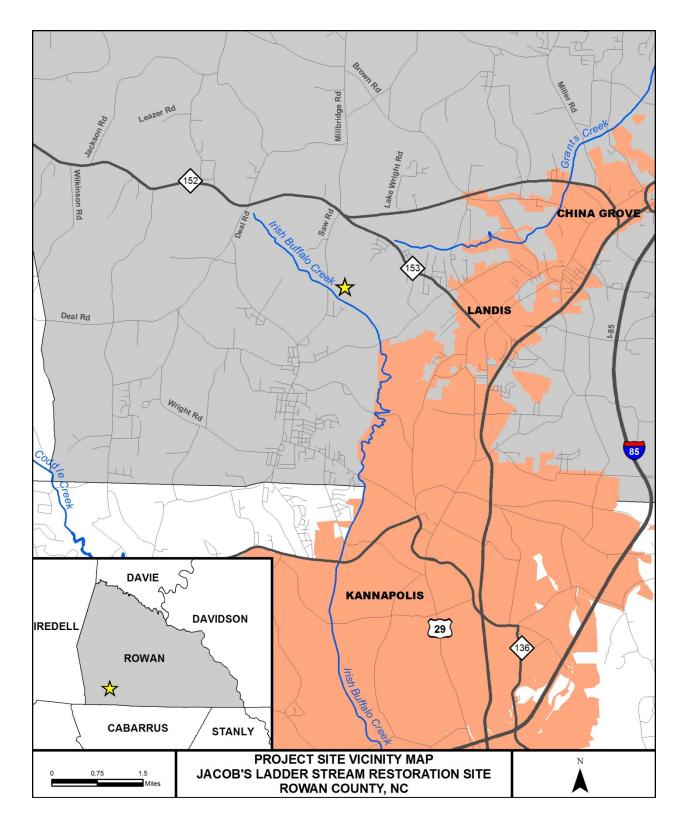
2.0 SITE SELECTION

2.1 Directions

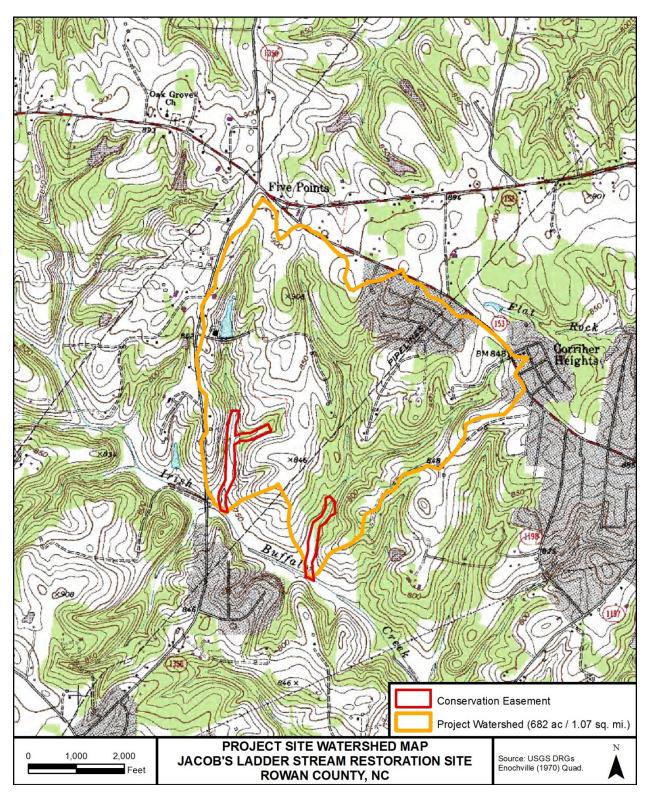
The Jacob's Ladder Stream Restoration Site is west of China Grove and north of Kannapolis, located off of Saw Road. To reach the site from Raleigh: proceed west on I-40 for approximately 62 miles. Then travel on I-85 south toward High Point/Charlotte for approximately 50 miles. Take Exit 68 toward China Grove on US-29 south. Turn right on NC-152 on East Church Street for approximately 5 miles and then turn left onto Saw Road. The site will be approximately 1-mile ahead on the left (shortly after passing Goodnight Lake Road) (See 2.3 Vicinity Map).

2.2 Site Selection

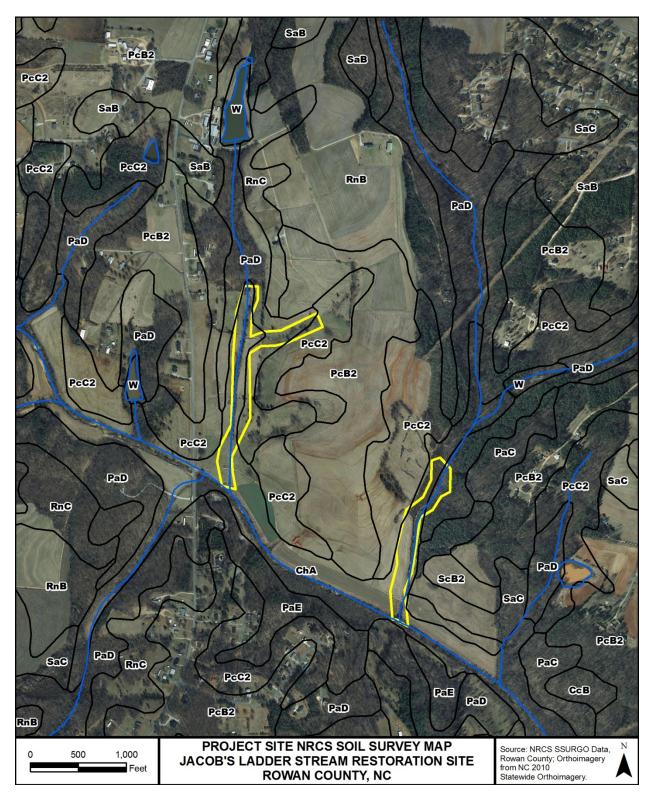
The site is part of the 03040105 Watershed Cataloging Unit (Rocky River). The Rocky River Watershed as a whole is experiencing a large amount of habitat alteration due to population growth from Charlotte and its surrounding metropolitan area. The drainage is expected to gain an estimated 950,000 new residents by 2030 (NCDENR, EEP 2009). As a result, the focus in this watershed is on mitigating impacts from stormwater and protecting existing habitat (NCDENR, EEP 2009).

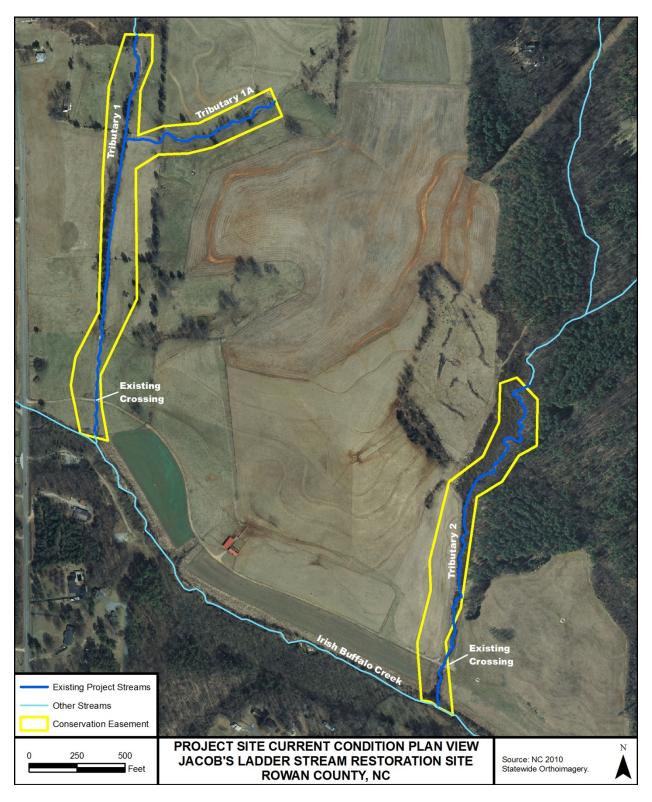

The North Carolina Division of Water Quality (NCDWQ) assigns surface waters a classification in order to help protect, maintain, and preserve water quality. The site is located in a water supply watershed; Irish Buffalo Creek flows into Kannapolis Lake, which is the primary water source for the City of Kannapolis. The section of Irish Buffalo Creek immediately below the project site (DWQ 13-17-9-(0.5)) is classified as a Class C, Water Supply III (WS-III) (NCDENR, DWQ 2012b).

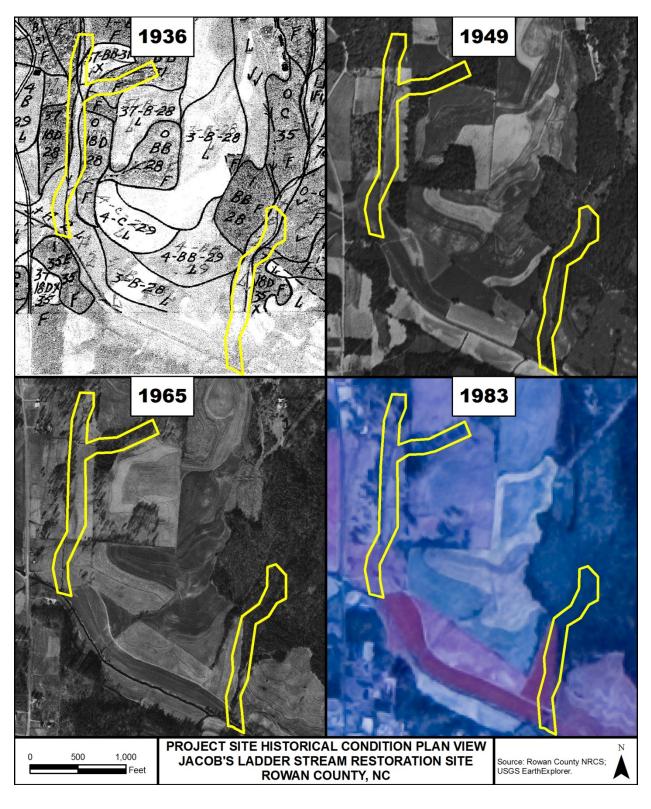
- Class C Waters in North Carolina are protected for secondary recreation, fishing, wildlife, fish and aquatic life propagation and survival, agriculture, and other uses suitable for Class C. Secondary recreation includes wading, boating, and other uses involving human body contact with water where such activities take place in an infrequent, unorganized, or incidental manner. There are no restrictions on watershed development or types of discharges.
- Water Supply III (WS-III) Waters used as sources of water supply for drinking, culinary, or food processing purposes where a more protective WS-I or II classification is not feasible. These waters are also protected for Class C uses. WS-III waters are generally in low to moderately developed watersheds.

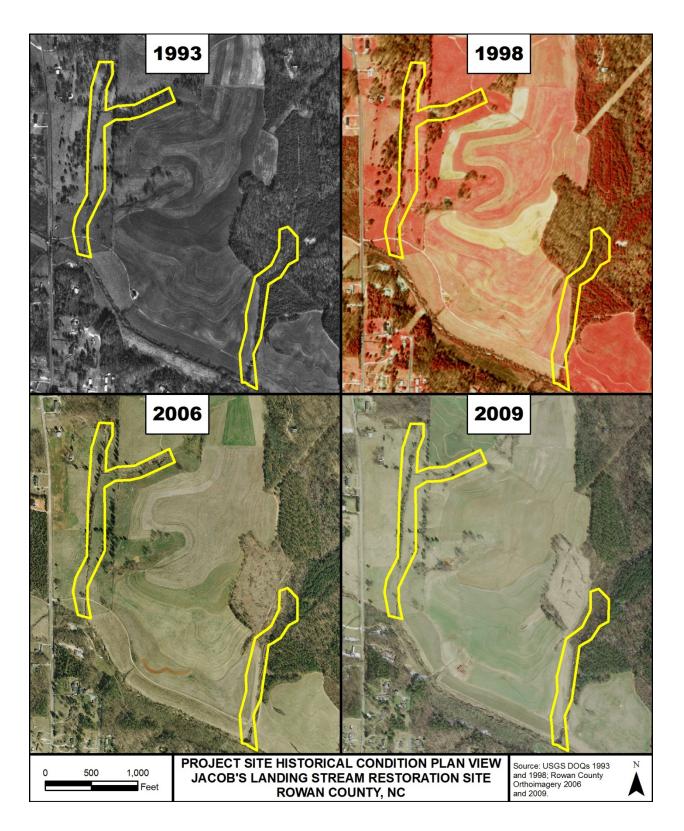

Downstream of Kannapolis Lake, Irish Buffalo Creek is listed as impaired on the 2012 North Carolina 303(d) list-Category 5 (Unit 13-17-9-(2)) listed for turbidity and copper violations (NCDENR, DWQ 2012a). The Lower Yadkin Pee-Dee River Basin Restoration Priorities 2009 report noted that several animal operations existed in the Irish Buffalo Creek watershed and that there was potential for future restoration projects to add to the ecological uplift in the watershed (NCDENR, EEP 2009).

Based on correspondence with the landowner, the site has been actively used for timber and cattle production for over five generations. Historic aerials were examined for any additional information about how the site hydrology and vegetation has changed over the last century. The reviewed aerials are included in 2.7 Historical Condition Plan View. Historic aerials were obtained from Rowan County NRCS and the USGS Earth Explorer for 1936, 1949, 1965, 1983, 1993, 1998, 2006, and 2009. The photographs confirm that the modifications to the project streams have been in place for quite some time; the aerial in 1936 indicates the lower reaches were likely straightened by that time and the aerial from 1949 shows that they certainly were by this later date. Tributary 1 on the western side and Tributary 1A coming from the northeastern portion of the project were both forested at this time, but the remainder of the site had little riparian vegetation. This photo also showed that the forest along the banks of Irish Buffalo Creek was cleared along the southern edge of the project. Photos from 1965 and 1983 show little change from the previous modifications that occurred at the Jacob's Ladder Stream Restoration Site. By 1993 and 1998, more of the forested cover at the site had been removed. The 2006 photo shows a large clear cut adjacent to Tributary 2 along the eastern side of the project.


2.3 Vicinity Map


2.4 Watershed Map


2.5 Soil Survey



2.6 Current Condition Plan View

2.7 Historical Condition Plan View

2.8 Site Photographs

Looking upstream at cattle crossing located at the start of T1-1. 2/10/2012

Looking downstream at degraded bank on T1-1. 2/10/2012

Looking downstream at the start of T1A-1. 2/10/2012

Looking downstream at cattle damage on T1A-1. 2/10/2012

Looking downstream at T1A-1 transitioning into T1A-2. 2/10/2012

Looking downstream at the start of T1A-2. 2/10/2012

Looking downstream at T1A-2. 2/10/2012

Looking downstream at the ponded area on T1A-3. 2/10/2012

Looking downstream at the head cut section of T1A-3. 2/10/2012

Looking upstream at the head cut section of T1A-3. 2/10/2012

Looking downstream at T1-2. 2/10/2012

Looking upstream at degraded bank on T1-2. 2/10/2012

Looking downstream at culvert on T1-2. 2/10/2012

Looking downstream at end of reach after the culvert on T1-2. 2/10/2012

Looking downstream at the top of T2-1. 2/10/2012

Looking at an eroded bank on T2-1. 2/10/2012

Looking upstream at an eroded bank on T2-1. 2/10/2012

Looking downstream at T2-2. 2/10/2012

Looking downstream at eroded bank on T2-2. 2/10/2012

Looking at an eroded bank on T2-2. 2/10/2012

Looking downstream at culvert at the end of reach T2-2. 2/10/2012

3.0 SITE PROTECTION INSTRUMENT

3.1 Site Protection Instrument Summary Information

The project site will be placed in a permanent conservation easement held by the State of North Carolina and will consist of 17.2 acres.

All site protection instruments require 60-day advance notification to the US Army Corps of Engineers and the State prior to any action to void, amend, or modify the document. No such action shall take place unless approved by the State.

3.2 Site Protection Instrument Figure

The land required for the construction, management, and stewardship of this mitigation project includes one parcel owned by the following entities in Rowan County; Martha Myers Deal Revocable Trust, Oscho Roy Deal, Oscho Roy Deal Revocable Trust, Roy Rhodes Trust. The preliminary conservation easement boundary has been included in Appendix A.

4.0 BASELINE INFORMATION

Table 2. Project Information

Table 2. Project Information	Γ		11.2	11 0. 5			
Project Name		Jac	cob's La	dder Stream Resto	ration Site		
County Project Area (acres)				Rowan County 17.2 acres			
8			25.5		< 111		
Project Coordinates (lat. and long.)		1 10		52956 N, 80.65311	6 W		
Physiographic Province	Project Water	shed Sum	mary Ir	Piedmont			
River Basin				Yadkin-Pee Dee			
USGS Hydrologic Unit 8-digit	03040105	T	ISCS U	ydrologic Unit 14-	digit 020	40105020040	
DWQ Sub-basin	03040103		505 11	13-17-09	uigit 030	40103020040	
Project Drainage Area			682	acres/1.06 square n	niles		
Project Drainage Area Percentage			082		lines		
of Impervious Area				1.1%/8 acres			
CGIA Land Use Classification	6.9%	Mixed Har	dwoods	Herbaceous Cover Conifers, and 0.59			
	Reach S	Summary I	nforma				
Parameters	T1-1	T1-1 T1-2 T1A-1, T1A-2, T1A-3 T2-1					
Length of reach (linear feet)	587	1,59		916	837	1,246	
Valley classification	VIII	VII	Ι	VIII	VIII	VIII	
Drainage area (acres)	136 acres	231.6 a	cres	34.5 acres	428.5 acres	450.1 acres	
NCDWQ Water Quality Classification	Class C, WSIII	Class C,	WSIII	Class C, WSIII	Class C, WSIII	Class C, WSII	
Morphological Description (stream type)	Modified	Modif		Modified	Modified	Modified	
Evolutionary trend	Ditching and Pasture			Ditching and Pasture	Ditching and Pasture	Ditching and Pasture	
Mapped Soil Series	Chewacla loam	acla loam Chewacla loam		Pacolet sandy loam	Pacolet sandy loam	Chewacla loar	
Drainage class	Poorly drained	Poorly di		Well drained	Well drained	Poorly drained	
Soil Hydric status	Non hydric	Non hy		Non hydric	Non hydric	Non hydric	
Slope	0-2%	0-2%	-	0-2%	0-2%	0-2%	
FEMA classification	N/A	AE (port backwat Irish Bu Creek c	ter of ffalo	N/A	N/A	AE (portion in backwater of Irish Buffalo Creek only)	
Native vegetation community	Pasture	Pastu	re	Pasture	Mixed successional hardwoods	Pasture	
Percent composition of exotic invasive vegetation	0%	0%		0%	15-25%	10%	
	Regula	atory Cons	ideratio	ons			
Regulation	Applicab	le?		Resolved		Supporting Documentation	
Waters of the United States – Section 404	Yes			Submitting NWP 27 Mitigation Plan a	pproval	N/A	
Waters of the United States – Section 401	Yes		S	Submitting NWP 27 following Mitigation Plan approval		N/A	
Endangered Species Act*	No			N/A		N/A	
Historic Preservation Act*	No			N/A		N/A	
Coastal Zone Management Act * (CZMA)/ Coastal Area Management Act (CAMA)	No		N/A			N/A	
FEMA Floodplain Compliance	Yes		Flood	plain development Rowan Cou		N/A	
Essential Fisheries Habitat*	No			N/A		N/A	

* Items addressed in the Categorical Exclusion in Appendix B.

4.1 Watershed Summary Information

The site is within the 03040105 Rocky River Watershed Unit (Rocky River). The Rocky River Watershed as a whole is experiencing extensive habitat alteration due to population growth from Charlotte and its surrounding metropolitan area. The project drainage is comprised of 1.1 square miles (682 acres) that flow through the project floodplain before reaching Irish Buffalo Creek, which ultimately flows into the Kannapolis Lake downstream of the project site. Current land use in the project watershed (See 2.4 Watershed Map) consists of cultivated land (108 ac/15.8%), high intensity developed (1 ac/0.1%), managed herbaceous cover (240 ac/35.1%), mixed hardwoods/conifers (47 ac/6.9%), mixed upland hardwoods (284 ac/41.6%), and southern yellow pine (3 ac/0.5%) (NCCGIA Land Cover, 2006). The approximate total impervious cover of the project watershed is 1.1% (8 ac). This estimate was developed using the following percent impervious estimates: high intensity developed (100%), cultivated/managed (2%) and forest (0%). The project area is located in the United States Geological Survey (USGS) Enochville Quadrangle (1970).

According to the Rowan County Land Use Plan the Jacob's Ladder Stream Restoration Site is located in "Area 2" of their land use plan (Benchmark, 2009). This area of the county will encourage mixed use development and encourage connectivity through open space networks with surrounding development to promote walking and biking. Traditional and conservation subdivisions will be encouraged in this area. Current lot size minimums (1 acre) are proposed in this area. Based on this information, and the stormwater requirements for new development, it does not appear that the project will be significantly impacted by stormwater discharges, even if a full build-out scenario is implemented in the watershed.

4.2 Geology and Soils Information

The site lies within the Southern Outer Piedmont (Level IV 45b) ecoregion of the Piedmont physiographic province. This area is characterized by irregular plains with low rounded hills and ridges consisting of low to moderate gradient streams with mostly cobble, gravel and sandy substrates. The underlying rocks of the area consist of gneiss, schist and granite covered with deep saprolite and mostly red, clayey subsoils. According to the soil survey for Rowan County, the primary soils along the project streams are part of the Chewacla loam series as shown in 2.5 Soil Survey. There are also small mapped areas of Pacolet sandy loam and Pacolet sandy clay loam in the upper reaches of the project. Chewacla loam is described as a very deep, somewhat poorly drained soil that occurs within river or stream valleys and drainage ways of the piedmont. Pacolet sandy loam is a very deep and well-drained soil that occurs within narrow ridges and side slopes in piedmont uplands. (Soil Survey of Rowan County, NC, NRCS, 2004).

4.3 Reach Summary Information

Existing Streams

The streams at the Jacob's Ladder Stream Restoration Site have been impacted by a history of logging, grazing, and channelization (See 2.8 Site Photographs). Three separate streams make up the site: T1 begins in the northwestern project corner, T1A flows from the east to join T1; and T2 comes onto the site from the northeastern corner. Both T1 and T2 flow to the south and join Irish Buffalo Creek as it flows to the east along the southern property boundary (See 2.6. Current Condition Plan View).

T1 is a first-order stream that consists of project streams T1-1 and T1-2. The stream begins in the northwestern corner of the property and flows south for approximately 2,179 linear feet through the Jacob's Ladder Stream Restoration Site until it reaches Irish Buffalo Creek. T1-1 originates from a farm pond approximately 1,500 linear feet to the north and then travels through a forested drainage until it

comes onto the project site just upstream of a wooden fence across the channel. Once the stream leaves the wooded cover, it travels straight down the valley, along an alignment that is not in the lowest part of the valley, indicating that it was channelized at some time prior to 1936. The banks have been impacted by the removal of riparian vegetation and grazing along the entire length of the project stream. The stream also lacks distinct pool and riffle features; erosion from unstable banks and the upper slopes have contributed an excess amount of sediment that has impacted these features in addition to an unstable stream bed. The area right at the start of the project stream has been trampled by cattle and lacks distinct banks. Approximately 587 linear feet from the top of the project, T1-1 reaches the confluence with T1A-3. At this point, T1-2 enters a more incised reach with cedars along the top of the banks. The banks are more defined in this area, but they are experiencing erosion. Due to the straight, confined channel, distinct bedform features are infrequent in this section. After another 1,000 linear feet downstream, T1-2 goes under another wooden fence across the channel and enters into a broader valley as it approaches Irish Buffalo Creek. This section has also been straightened, and there is even less riparian vegetation, which has exacerbated the bank erosion. The stream goes through an existing road crossing with a culvert and flows for approximately 200 linear feet before reaching Irish Buffalo Creek.

T1A is a first-order, seep-driven stream that consists of project streams T1A-1, T1A-2, and T1A-3. T1A flows 916 linear feet toward the west before draining into T1-2. The project reach begins below a farm road crossing as a B-type channel and transitions from an intermittent channel to a perennial stream at the beginning of the project reach. The first 306 linear feet of T1A-1 have a stable channel pattern, but the stream is experiencing bed degradation as it flows down the valley. The lack of riparian vegetation has increased bank erosion due to lack of root material in the soils. After this first section, T1A-2 becomes less steep and has more mature trees along its banks. The pattern is stable, but there are still isolated areas of bank erosion. After 560 linear feet from the start of T1A, T1A-3 spreads out into a dispersed channel where a small farm pond exists with a breached berm. In this section of channel the banks and planform are poorly defined. After the stream flows through the old pond berm, it begins to quickly incise to reach the confluence with T1-2. It makes a sharp turn to the right and then the left as it downcuts. Approximately 60 linear feet upstream of the confluence with T1-2, there is a severe 4-foot head cut moving up from the base elevation of T1-2.

T2 is a second-order stream that consists of project streams T2-1 and T2-2. The stream begins from the northeastern corner of the project and flows south for approximately 2,083 linear feet until the confluence with Irish Buffalo Creek. T2-1 starts in a previously logged vegetative community with mixed successional growth. There is minimal riparian vegetation to stabilize the banks and there are invasive plant species present throughout the entire reach. The pattern is stable, but the banks show erosion along the outer meanders. T2-1 flows for 810 linear feet before it reaches a section of bedrock grade control in the channel, which begins T2-2. This feature protects the upstream reaches from the downstream bed degradation. As the stream continues to flow south, it immediately begins incising as it progresses toward Irish Buffalo Creek. After the bedrock grade control, the stream enters a confined channelized reach. The banks are high and riparian vegetation is limited to small trees and shrubs or herbaceous vegetation. There is limited bedform diversity in the channel. Similar to T1, this part of the reach has been channelized and does not flow through the lowest part of the valley. T2-2 continues to flow south to an existing crossing approximately 200 linear feet upstream of the confluence with Irish Buffalo Creek. The channel remains incised until the confluence.

All project reaches (existing) were evaluated using NCDWQ Stream Classification Forms in February 2012 (Appendix C). The NCDWQ forms were used to determine if the tributaries were classified as perennial or intermittent streams. A numerical value of at least 30 points is determined from the NCDWQ stream identification form to classify the stream as a perennial stream (NCDENR, 2010). All project reaches scored a numerical value of at least 30 points.

Channel Classification

As T1-1 comes onto the project site, it begins as an overwidened channel due to a cattle crossing. Downstream of the cattle crossing, the channel narrows and becomes a "G4" stream type with an entrenchment ratio of 1.3, a low width-to-depth ratio of 7.6 and a bank height ratio of 3.3. The bankfull width is 15.8 feet. Downstream, after the confluence with T1A-3, the channel still classifies as a "G4" stream type with a higher width-to-depth ratio of 8.8 and an entrenchment ratio of 1.7. The stream then continues downstream with an entrenchment ratio of 2.2 and a very low width-to-depth ratio of 4.6 before reaching Irish Buffalo Creek.

T1A-1 begins as a moderately incised channel with a low entrenchment ratio. Further downstream T1A-2 becomes a "C4" stream type with an entrenchment ratio of 2.4 and a bank height ratio of 1.0. From here, the stream spreads out into a dispersed channel and then flows through an old pond berm and becomes an "F4" stream type. The entrenchment ratio is 1.1, with a very high width-to-depth ratio of 20.1. The channel continues to incise as it flows toward the confluence of T1-2.

T2-2 begins as a "G4" stream type with a moderate entrenchment ratio of 1.9 and a very low width-todepth ratio of 6.1. Further downstream, the channel continues to classify as a "G4" with a very low widthto-depth ratio. Downstream of the bedrock grade control, the stream continues to incise in its channelized reach with bank height ratios greater than 2.0.

Channel Morphology (Pattern, Dimension, and Profile)

A Rosgen Level III assessment was conducted to gather existing stream dimension, pattern, and profile data to determine the degree of channel instability. Channel cross-sections were surveyed at eight representative locations along the project; one location each on T1A-2, T1A-3, and T2-2, two locations on T2-1 and three locations on T1-2. Data developed from these surveys are presented in a channel morphology summary in Appendix C.

Channel Stability Assessment

A qualitative stability assessment was performed to estimate the level of departure and determine the likely causes of the channel disturbance. This assessment facilitates the decision-making process with respect to restoration alternatives and establishing goals for successful restoration. Stream bank measurements were taken on the following characteristics; bank heights, bank angles, materials, presence of soil layers, rooting depth, rooting density and percent of bank protection. The data was used to develop the Bank Erodibility Hazard Rating (BEHI) forms for all reaches (Appendix C), (Rosgen, 2001).

A total of nineteen BEHI rating forms were performed and completed for all reaches. Table 3 summarizes total BEHI values for all reaches. T1-1 exhibited BEHI ratings of moderate 29.2, high 35.1, and very high 40.9 with a bank height ratio at 3.3. The T1-2 assessment exhibited a moderate 29.4, high 33.7, and very high 42.4 with bank height ratios in the project reach ranging from of 2.3 to 3.3. T1A-1 exhibited BEHI ratings of moderate 27.1, high 31.4, and very high 40.4 with a bank height ratio of 1.0. The T1A-2 assessment exhibited a BEHI rating of moderate 26.5 with a bank height ratio at 1.0. T1A-3 exhibited moderate 28.7, high 33.7, and very high 45.4 BEHI ratings with bank height ratio of 8.6. T2-1 assessment exhibited BEHI ratings of moderate 29.5, high 37.4, and very high 40.4 with bank height ratios in the reach ranging from 1.9 to 2.0. T2-2 exhibited moderate 29.8, high 36.1, and very high 47.1 BEHI ratings with a bank height ratio of 2.0.

The reaches exhibit characteristics of unstable stream channels. High bank height ratios (>1-2) are typical of incised and/or channelized streams. Most notably, the channels show evidence of bank erosion and undercutting along with channelization in portions of each reach. Furthermore, several sections do not have vegetation on the banks and consequently lack rooting strength and cover protection. The high bank

height ratio indicates the lack of a bankfull or floodplain feature along the stream to provide any access during high flow events.

Table 3. BEHI Data

	Left	Bank	Right	Bank	Total		
	BEHI	Linear Footage	BEHI	Linear Footage	BEHI Rating	Linear Footage	
T1-1	Very High	50	Very High	110	40.9	160	
	High	135	High	75	35.1	210	
	Moderate	70	Moderate	70	29.2	140	
Reach Total		255		255			
<i>T1-2</i>	Very High	220	Very High	85	42.4	305	
	High	145	High	-	33.7	145	
	Moderate	205	Moderate	160	29.4	365	
Reach Total		570		570		•	
T1A-1	Very High	80	Very High	-	40.4	80	
	High	25	High	70	31.4	95	
	Moderate	35	Moderate	40	27.1	75	
Reach Total		140		110		•	
T1A-2	Moderate	25	Moderate	20	26.5	45	
Reach Total		25		20			
T1A-3	Very High	100	Very High	100	45.4	200	
	High	-	High	35	33.7	35	
	Moderate	40	Moderate	-	28.7	40	
Reach Total		140		135			
T2-1	Very High	45	Very High	40	40.4	85	
	High	63	High	75	37.4	138	
	Moderate	80	Moderate	45	29.5	125	
Reach Total		188		160			
T2-2	Very High	260	Very High	165	47.1	425	
	High	65	High	195	36.1	260	
	Moderate	150	Moderate	75	29.8	225	
Reach Total		475		435		•	

Bankfull Verification

The standard methodology used in natural channel design is based on the ability to select the appropriate bankfull discharge and generate the corresponding bankfull hydraulic geometry from a stable reference system(s). The determination of bankfull stage is the most critical component of the natural channel design process.

Bankfull can be defined as "the stage at which channel maintenance is most effective, that is, the discharge at which moving sediment, forming or removing bars, forming or changing bends and meanders, and generally doing work that results in the average morphologic characteristics of the channels," (Dunne and Leopold, 1978). Several characteristics that commonly indicate the bankfull stage include: incipient point of flooding, breaks in slope, changes in vegetation, highest depositional features (i.e. point bars), and highest scour line. The identification of bankfull stage, especially in a degraded

system, can be difficult. Therefore, verification measures were undertaken to validate the correct identification of the bankfull stage on all project reaches.

Regional curves are typically utilized in ungauged areas to approximate bankfull discharge, area, width, and depth as a function of drainage area based on interrelated variables from other similar streams in the same hydrophysiographic province. Regional curves and corresponding equations from "Bankfull Hydraulic Geometry Relationships for North Carolina Streams" (Harman *et al.*, 1999) were used to approximate bankfull in the project reaches. Based on the regional curves, a bankfull discharge and cross-sectional area were estimated for all reaches. For T1-1, the regional curve estimates a bankfull discharge of 31 ft³/s and a cross-sectional area of 7.8 ft². For T1-2, the regional curve estimates a bankfull discharge of 45 ft³/s, and 3.1 ft². For T2-1, the regional curve estimates a bankfull discharge of 69 ft³/s and a cross-sectional area of 16.8 ft², while T2-2 estimates a bankfull discharge of 7.1 ft³/s and a cross-sectional area of 17.4 ft².

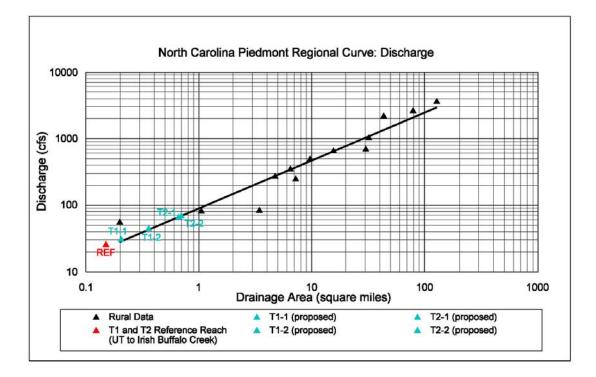
A similar reach of UT to Irish Buffalo Creek, located 400 linear feet upstream of an existing project reach on T1 of Jacob's Landing Stream Restoration Site, was surveyed for a reference stream by KCI in February 2012. KCI analyzed the relationship between drainage area and discharge to the NC rural piedmont regional curve data. The results indicated the bankfull cross-sectional area and discharge for the reference stream reveal consistent plotting of the regional curve data, demonstrating that bankfull stage is suitable at the reference stream. Since this stream is located in close proximity of Jacob's Ladder Stream Restoration Site, KCI feels that it is a suitable reference for the project reaches.

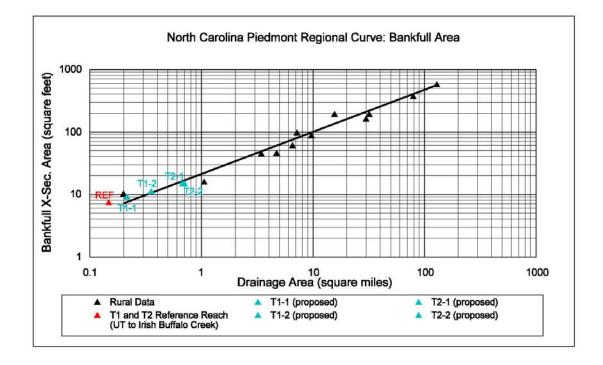
The method used to confirm bankfull stage at Jacob's Ladder Stream Restoration Site was bankfull field identification of UT to Irish Buffalo Creek Reference Reach (T1). For the reference reach cross-section, bankfull field indicators resulted in a discharge of 25 ft^3 /s, which is similar to the piedmont regional curve bankfull discharge of 25 ft^3 /s. After analyzing the bankfull verification results, the design discharges were set for the project reaches. The design bankfull discharges are shown in Table 4.

Parameters	Reference XS	T1-1	T1-2	T1A-1	T1A-2	T1A-3	T2-1	T2-2
Regional Curve								
	25 ft ³ /s	31 ft ³ /s	$45 \text{ ft}^{3}/\text{s}$	$12 \text{ ft}^{3}/\text{s}$	$12 \text{ ft}^{3}/\text{s}$	$12 \text{ ft}^{3}/\text{s}$	69 ft ³ /s	71 ft ³ /s
UT to Irish Buffalo Creek Reference (T1) Discharge								
	25 ft ³ /s							
Design Discharge								
		31 ft ³ /s	44 ft ³ /s	$12 \text{ ft}^{3}/\text{s}$	$12 \text{ ft}^{3}/\text{s}$	$12 \text{ ft}^{3}/\text{s}$	63 ft ³ /s	69 ft ³ /s

Table 4. Bankfull Discharge

Bankfull data for the project reaches were compared with the NC rural piedmont regional curve. The proposed cross-sectional areas and bankfull discharge for the reaches are shown overlaid with the NC rural regional curve in (4.4 Regional Curve Discharge). Analysis of the bankfull cross-sectional areas and discharge for the project reaches reveal consistent correlation with the NC rural piedmont regional curve data.


Vegetation


Because of previous cattle impacts at Jacob's Ladder Stream Restoration Site, no distinct vegetative communities exist on the site. The vegetation within the project area is primarily comprised of open pastures dominated by various grass species and small understory trees.

T1 consists of open pasture with little to no riparian species. The riparian corridor contains red cedar (*Juniperus virginiana*) and various grasses. The downstream portion of T1 has been affected by cattle grazing and consists of limited riparian species.

The start of T2 is in early successional growth with riparian vegetation limited to small trees and shrubs or herbaceous vegetation. The dominant species consist of tulip poplar (*Liriodendron tulipifera*), red maple (*Acer rubrum*), and box elder (*Acer negundo*). Chinese privet (*Ligustrum sinense*) and multiflora rose (*Rosa multiflora*) are the invasive species that exist along T2. These species will be removed during the construction phase of the project and any remaining plants will be treated. Treatment techniques may vary based on seasonality, the concern for drift and the size of the plants and stems. Basal bark spray of Garlon 4 (triclopyr ester) and foliar spraying of Rodeo (glyphosate) or Escort XP (metsulfuron methyl) will be the preferred treatment methods. Treatments will be targeted in late summer, when possible. For large stems, stem injections using Garlon 3A (triclopyr) will be completed in the fall. In order to minimize the allelopathic influence of tall fescue (primarily Kentucky 31) along the stream banks and within the riparian zone, fescue will be mechanically removed and or treated with glyphosate herbicide. A chelated form of glyphosate (Rodeo, or similar) will be used in proximity to the stream, and a non-chelated form (Roundup, or similar) will be used in upland areas.

4.4 Regional Curve Discharge

Reference; Wildlands Engineering, Inc. 2010

4.5 Wetland Summary Information

Not applicable for this project.

4.6 Regulatory Considerations

The confluences of T1 and T2 with Irish Buffalo Creek are located in the 100-year floodplain (Zone AE). Modifications made to the tributaries in these locations are not anticipated to have any impact on the flood elevations of Irish Buffalo Creek. It is the intent of the restoration design to maintain the existing 100-year flood elevations. Per communication with the Rowan County floodplain administrator, no hydraulic modeling will be required. KCI submited a county floodplain development permit documenting that there will be no hydraulic impacts such as berms built or banks extended on the portion that is within the floodway (see FEMA Compliance in Appendix B).

5.0 DETERMINATION OF CREDITS

Mitigation credits presented in these tables are projections based upon site design. Upon completion of site construction the project components and credits data will be revised to be consistent with the as-built condition.

Mitigation Credits											
	Stream		Riparian Wetland	Non-rij Wetl		Buffer	Nut	ogen rient fset		Phosphorous lutrient Offset	
Туре	R	EI	EII	-	-		-		-		-
Length	4,193	1,056	140	-	-		-		-		-
Credits	4,193	704	56	-	-		-		-		-
TOTAL CREDITS		4,953		-	-		-		-		-
Project Components											
Reach II)	Existing	Footage		roach II etc.)		storation - ration Equ	~ -	Propos Footag		Mitigation Ratio
T1-1		58	37	F	21	1	Restoration	n	739		1:1
T1-2		1,5	92	P	P1 Restoration		n	1,622	2	1:1	
T1A-1		30)6		- Enh		nhancemer	nt I	306		1:1.5
T1A-2	T1A-2 140			-	En	hancemen	t II	140		1:2.5	
T1A-3	T1A-3 470		F	21]	Restoration	n	498		1:1	
T2-1	T2-1 837			-	Er	nhancemer	nt I	750		1:1.5	
T2-2		1,2	46	F	21]	Restoration	n	1,334	1	1:1

Table 5. Determination of Credits

6.0 CREDIT RELEASE SCHEDULE

All credit releases will be based on the total credit generated as reported by the as-built survey of the mitigation site. Under no circumstances shall any mitigation project be debited until the necessary Department of the Army (DA) authorization has been received for its construction or the District Engineer (DE) has otherwise provided written approval for the project in the case where no DA authorization is required for construction of the mitigation project. The DE, in consultation with the Interagency Review Team (IRT), will determine if performance standards have been satisfied sufficiently to meet the requirements of the release schedules below. In cases where some performance standards have not been met, credits may still be released depending on the specifics of the case. Monitoring may be required to restart or be extended, depending on the extent to which the site fails to meet the specified performance standard. The release of project credits will be subject to the criteria described as follows:

Stream Credits					
Monitoring Year	Credit Release Activity	Interim Release	Total Released		
0	Initial Allocation – see requirements below	30%	30%		
1	First year monitoring report demonstrates performance standards are being met	10%	40%		
2	Second year monitoring report demonstrates performance standards are being met	10%	50% (65%*)		
3	Third year monitoring report demonstrates performance standards are being met	10%	60% (75%*)		
4	Fourth year monitoring report demonstrates performance standards are being met	10%	70% (85%*)		
5	Fifth year monitoring report demonstrates performance standards are being met and project has received closeout approval	15%	100%		

*If two bankfull events have been observed.

Initial Allocation of Released Credits

The initial allocation of released credits, as specified in the mitigation plan can be released by the NCEEP without prior written approval of the DE upon satisfactory completion of the following activities:

- a. Approval of the final Mitigation Plan
- b. Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property
- c. Completion of project construction (the initial physical and biological improvements to the mitigation site) pursuant to the mitigation plan; Per the NCEEP Instrument, construction means that a mitigation site has been constructed in its entirety, to include planting, and an as-built report has been produced. As-built reports must be sealed by an engineer prior to project closeout, if appropriate but not prior to the initial allocation of released credits.
- d. Receipt of necessary DA permit authorization or written DA approval for projects where DA permit issuance is not required.

Subsequent Credit Releases

All subsequent credit releases must be approved by the DE, in consultation with the IRT, based on a determination that required performance standards have been achieved. For stream projects a reserve of 15% of a site's total stream credits shall be released after two bank-full events have occurred, in separate years, provided the channel is stable and all other performance standards are met. In the event that less than two bank-full events occur during the monitoring period, release of these reserve credits shall be at the discretion of the IRT. As projects approach milestones associated with credit release, the NCEEP will submit a request for credit release to the DE along with documentation substantiating achievement of criteria required for release to occur. This documentation will be included with the annual monitoring report.

7.0 MITIGATION WORK PLAN

7.1 Target Stream Type and Plant Communities

Target Streams

The design for the Jacob's Ladder Stream Restoration Site proposes the Restoration of approximately 4,193 linear feet, Enhancement I of approximately 1,056 linear feet, and Enhancement II of 140 linear feet. The Enhancement I will involve adjusting the stream to have the appropriate profile and dimension, while the Enhancement II will involve grading the stream banks, removing invasive vegetation and planting the buffer with native trees (USACE *et. al* 2003). The tributaries are divided into seven separate reaches based on the restoration or enhancement approach applied to the portions of the channels. The project reaches are identified in (7.6 Proposed Mitigation Plan View).

Target Plant Communities

The 50-foot buffer along the project streams will receive riparian plantings consisting of native woody species and will be incorporated as outlined in the planting plan. Six hundred and eighty (680) stems per acre (8' x 8' spacing) will be planted along project reaches to achieve a mature survivability of two hundred sixty (260) stems per acre. Woody vegetation planting will take place during dormancy. The riparian areas for T1-1, T1-2, T2-1, T2-2, and T1A-3 will be planted as a Piedmont Alluvial Forest and will consist of the following:

American Sycamore	Platanus occidentalis	River Birch	Betula nigra
Swamp Chestnut Oal	x Quercus michauxii	Willow Oak	Quercus phellos
Green Ash	Fraxinus pennsylvanica	Tulip Poplar	Liriodendron tulipifera

The riparian areas of T1A-1 and T1A-2 will be planted as Mesic Mixed Hardwood Forest and may consist of the following species:

Tulip Poplar	Liriodendron tulipifera	White oak	Quercus alba
Southern Red Oak	Quercus falcata	American Persimmon	Diospyros virginiana
Willow Oak	Quercus phellos	Pin oak	Quercus palustris

On the restored stream banks, live stakes will be used to provide natural stabilization. Appropriate species identified for live staking include:

Silky Dogwood	Cornus amomum	Silky Willow	Salix sericea
Black Willow	Salix nigra	Common Elderberry	Sambucus canadensis

A herbaceous seed mix composed of appropriate native species will also be developed and used to further stabilize and restore the riparian and bank zones following construction.

In addition to planting the proposed community types, vegetative restoration will also include eliminating invasive species that have moved into portions of the site. The targeted species will be treated with an appropriate herbicide.

7.2 Design Parameters

The mitigation approach for the Jacob's Ladder Stream Restoration Site will aim to restore and protect the headwater tributaries to Irish Buffalo Creek. Mitigation actions will focus on repairing isolated sections of bed degradation and bank erosion and restoring the unstable reaches that have been straightened or severely degraded by cattle. The overall approach to the design of Jacob's Ladder Stream Restoration Site is a Priority 1 approach, which will involve creating an appropriate dimension, pattern, profile and reconnecting the floodplain to an elevation at or similar to the historic floodplain elevation, while the existing channel will be abandoned and filled (Rosgen, 1997). Grade control, habitat structures, and constructed riffles will all be utilized to maintain the riffle and pool sequence in the newly constructed channel. Where feasible, the native riffle material from the existing channel will be used to enhance the newly constructed riffles. The constructed and enhanced riffles will be installed to provide protection from bed scour associated with the unstable, erosive soils at the site.

Tributary T1-1 – 739 linear feet of Restoration

T1 will be restored to a C4-type channel using a Priority 1 approach. As the stream comes onto the project site, it is a straightened channel with unstable, eroding banks. A new channel planform will be constructed by moving the stream to the right (west) as it comes onto the Jacob's Ladder Stream Restoration Site. Pulling the stream away from the old channel and transitioning the stream to reconnect with the relic floodplain will allow for lower bank heights to be constructed and a wider floodprone area to attenuate flows. T1-1 will be restored as a moderately sinuous channel with a bankfull bench and will transition from the existing bed elevation to a floodplain reconnected to the broad valley.

Tributary T1-2 – 1,622 linear feet of Restoration

This reach of T1 will start at the confluence with T1A and continue the same design approach as in T1-1. The restoration will use a Priority 1 approach to develop a moderately sinuous C4-type channel. After the confluence with T1A, the planform of T1-2 will be brought out to the left (east) of the existing straightened channel. Since most of the existing channel will be abandoned, the cedar trees along the old channel will be kept wherever possible.

There will be two crossings excluded from the conservation easement on this reach. The first crossing will be located just below the T1-1/T1A-3 confluence. The second crossing is located just upstream of the confluence with Irish Buffalo Creek and will be replaced with a newly designed culvert.

Tributary T1A-1 – 306 linear feet of Enhancement I

At the beginning of T1A, the bed cuts down quickly and the banks are eroding. This reach will be enhanced by stabilizing the stream below the upstream road crossing, shaping the banks to creating a bankfull bench, and installing grade control structures to gradually drop the bed elevation down. Currently, the vegetation along this reach is primarily herbaceous, so the riparian buffer will be planted with native trees and shrubs at a full density.

Tributary T1A-2 – 140 linear feet of Enhancement II

The section of T1A-2 has developed a stable planform and is less steep than the upstream reach. Enhancement II will be used to stabilize the banks and develop a bankfull bench with an entrenchment

ratio of 2.0 or more. Supplemental riparian plantings will be used to increase the rooting strength on the banks and to create a diverse riparian buffer beyond the tops of the banks.

Tributary T1A-3 – 498 linear feet of Restoration

The restoration reach on T1A-3 will begin where the channel flows through a drained pond. At the beginning of the reach, there is no defined channel through this area, but then the stream quickly cuts down to the confluence with T1. Through most of the old pond area the channel will remain in its existing condition as requested by members of the IRT during a site walk on August 3, 2011. As the stream approaches the old pond berm a Priority 1 approach will be used to restore a B4c/C4-type stream that will distribute the elevation change evenly along the new channel. The planform of T1A-3 will be brought out to the left (south) of the existing straightened channel. The new channel will be a moderately sinuous step-pool stream and tie-in to T1 downstream of the current confluence. Grade control, habitat structures, and constructed riffles will all be utilized to maintain the bed morphology of the newly constructed channel

Tributary T2-1 – 750 linear feet of Enhancement I

Upstream of the project start at T2, the stream is a stable B4-type channel that flows through a mature forested area with a stable pattern. The project reach of T2-1 is in transition. The forest cover becomes less dense along the stream and the banks are beginning to experience bank erosion. However, the pattern and bed elevations have remained stable, likely due to the large bedrock feature at the end of the reach. This reach will benefit from Enhancement I actions to tie in the stable reach upstream and the newly restored reach downstream. Enhancement will include shaping the banks, creating a bankfull bench, creating a more stable and heterogeneous stream bed, and replanting the riparian buffer to achieve a mix of native tree species.

There will be one crossing excluded from the conservation easement on this reach. The crossing will be located at the downstream portion of T2-1 at the transition of T2-2.

Tributary T2-2 – 1,334 linear feet of Restoration

T2-2 begins immediately upstream of a bedrock feature. After this point, the existing stream moves into a straightened, highly constrained channel. A Priority 1 approach will be used to move the stream to the right (west) to develop a moderately sinuous C4-type channel that is reconnected to the relic floodplain and has a defined riffle and pool sequence. This new pattern will move the stream out of the existing incising channel and allow a more effective riparian buffer to develop. Constructed riffles, grade control, and habitat structures will be used to maintain the stream bedform while transitioning the stream down to the confluence with Irish Buffalo Creek.

There will be one crossing excluded from the conservation easement on this reach. There is a crossing already in place just upstream of the confluence with Irish Buffalo Creek. This crossing will be replaced with a new culvert.

7.3 Data Analysis

The streams at the Jacob's Ladder Stream Restoration Site will be restored using a combination of C4 and B4c/C4 Rosgen stream types. The project streams are divided into reaches based on the drainages entering the streams and the restoration or enhancement approach needed to design the proposed channels. The morphological design criteria for each of the reaches are found in Table 6. Morphological Design Criteria. Below is a description of the specific design approach used for all project reaches.

T1 has been divided into two reaches for design purposes and will be restored as C4 channels. T2 was also divided into separate reaches based on the restoration and enhancement approach. T2-1 and T2-2 will

be restored and enhanced as C4 channels. The pattern and profile for T1 and T2 were developed from detailed morphological criteria and hydraulic geometry relationships taken from stable sections of UT to Irish Buffalo Creek Reference Reach (T1) (See Table 6 and Appendix C Morphological Design Criteria).

T1A has been divided into three separate reaches based on the restoration and enhancement approach. The UTFR Reference Reach was used to develop the morphological criteria for T1A-3, which will be restored as a B4c/C4 stream type.

The remaining upstream portion of T1A-1 and T1A-2 will be enhanced by grading stable banks, enhancing bed form, restoring a native riparian buffer, and permanently fencing out cattle. The UT to Wilkinson Reference Reach was used to develop the morphological criteria.

The design discharges and cross-sectional areas for all project reaches compare closely to their values as predicted by the regional curve. The designed stream discharges were also evaluated using the channel hydraulics and sediment transport for the proposed cross-sectional areas.

In-stream structures, including step pools, riffle grade controls, soil lifts, and log drops will be used to stabilize the restored channels (Refer to Plan Sheets 3 and 4). These structures are designed to reduce bank erosion, influence secondary circulation in the near-bank region of stream bends, and provide grade control. The structures further promote efficient sediment transport and produce/enhance in-stream habitat. Riffle areas will also be enhanced with graded gravel material to mimic existing stable riffle features. Coir fiber matting and seeding will be used to stabilize the newly graded stream banks and live stakes will be planted to provide long-term rooting strength.

During construction, the number of mature trees removed from the existing riparian areas will be minimized as much as possible. Any valuable trees that may provide immediate shade to the restored channel will be left in place if feasible. In the enhancement areas, certain trees may be able to remain on one bank if the opposite bank can be reshaped to accommodate the appropriate dimension for the stream. Prior to construction, woven wire exclusion fencing (Stay Tuff, model 949-12) and alternative watering options will be installed along the easement boundary to keep livestock out of the project streams. All of T1 and T1A will have fence installed along the easement boundary. Along T2, the fence will be installed along the restoration reach and then tie into existing fence in the upper forested reaches. To ensure adequate cattle watering, a groundwater well and three, four-hole cattle waterers will be installed prior to construction.

7.4 Reference Streams

A reference reach is a channel with a stable dimension, pattern, and profile within a particular valley morphology. The reference reach is used to develop dimensionless morphological ratios (based on bankfull stage) that can be extrapolated to disturbed/unstable streams to restore a stream of the same type and disposition as the reference stream (Rosgen 1998). For this project, three reference reaches were used to design the proposed restoration reaches: an Unnamed Tributary to Fisher River (UTFR) in Surry County, Unnamed Tributary to Wilkinson Creek in Chatham County, and UT to Irish Buffalo Creek (T1) (see Appendix C for detailed reference reach data).

UT to Fisher River Reference Site

An unnamed tributary to Fisher River (UTFR), a first order rural stream in Surry County, was selected as a reference reach for the restoration of the project streams. The reference reach is located on Fisher Valley Road off of Exit 93 from Interstate 77. The valley slope is approximately 1.6%. The sediment distribution and transport are similar to the project streams. The local topography is characterized by rolling hills. Approximately 300 linear feet of UTFR was surveyed and was classified as a B4c channel.

UTFR flows northeast into Fisher River and drains approximately 0.38 square mile of predominantly forested land with a small section of rangeland. The reference reach watershed is within the Northern Inner Piedmont ecoregion in the Piedmont physiographic province. The site is in the 14-digit hydrologic unit 03040101090010 in the Yadkin Basin and is in the DWQ Subbasin 03-07-02. The reference reach watershed elevations range from 1,420 feet AMSL at the headwaters of the site to 1,210 at the bottom of the reference reach.

UT to Wilkinson Reference Site

A section of Unnamed Tributary to Wilkinson Creek, located southwest of Chapel Hill, was identified and surveyed as a reference reach. UT to Wilkinson Creek flows west through Chatham County towards its confluence with Wilkinson Creek. It drains approximately 105 acres of low-density residential, agriculture, and forested lands.

Approximately 205 linear feet of the UT to Wilkinson Creek were surveyed (Appendix C contains data from the field assessment). This reach of UT to Wilkinson Creek was classified as a "B4c" channel type. The dimensionless hydraulic geometry relationships were developed from stable channel dimensions to facilitate the design of the proposed channel cross-sections for T1A-1 and T1A-2 enhancement reaches. The water surface slope and dimensions at this reference reach made it suitable for developing dimensionless ratios for T1A-1 and T1A-2. UT to Wilkinson Creek also has a valley slope similar to the T1A-1 and T1A-2 (0.17% compared to 0.20% at the project site).

UT to Irish Buffalo Creek Reference Site (T1)

A short reach of a tributary to Irish Buffalo Creek, located approximately 400 linear feet upstream of an existing project reach on T1-1 of Jacob's Landing Stream Restoration Site, was surveyed by KCI in February 2012 (Appendix C). The sediment distribution and transport are the same as the project streams. A stable riffle cross-section was surveyed and classified as an E4 channel to be used as a dimensional reference. Although likely logged previously, historic aerial photos indicate that this upstream reach of T1 has been under mature forest for at least fifty years. The stream flows through a hardwood forest and has stable planform and banks. Small cobble/gravel riffles are present and there is no evidence of bed degradation. The forest cover becomes less mature as the stream travels downslope, but the channel remains stable with functional riffles and pools. The dimensionless hydraulic geometry relationships were developed from stable channel dimensions to facilitate the design of the proposed channel cross-section, planform, and pattern data for T1 and T2 restoration reaches.

Table 6. Morphological Design Criteria

Variables	Existing	Existing	Existing	Ref. Reach UT to Irish	Proposed	Proposed	Proposed	Proposed
variables	T1-1, T1-2	T2-1	T2-2	Buffalo	T1-1	T1-2	T2-1	T2-2
Rosgen Stream Type	G4	G4	G4	E4	C4	C4	C4	C4
Mitigation Type	Restoration	Enh.I	Restoration	N/A	Restoration	Restoration	Enh.I	Restoration
Drainage Area (mi ²)	0.21, 0.36	0.67	0.70	0.16	0.21	0.36	0.67	0.70
Bankfull Width (W _{bkf}) (ft)	6.7-9.6	10.6-16.5	10.8	6.9	10.3	11.5	13.5	13.5
Bankfull Mean Depth (d _{bkf}) (ft)	1.1-1.5	1.2-1.7	2.3	1.1	0.9	1.0	1.1	1.1
Bankfull Cross-Sectional area (A _{bkf}) (ft ²)	9.8-10.5	18.5-20.6	25	7.4	9.0	11.0	15.3	15.3
Width/depth Ratio (W _{bkf} /d _{bkf})	4.6-8.8	6.1-13.2	4.7	6.4	12.0	12.0	12.0	12.0
Maximum Depth (d _{mbkf}) (ft)	1.7-2.4	2.1-2.6	3.4	1.6	1.4	1.5	1.8	1.8
Width of flood prone area (W_{fpa}) (ft)	12-16	20-35	16	23	23-70	26-70	30	30-70
Entrenchment Ratio (ER)	1.3-2.2	1.9-2.1	1.5	3.4	2.2-6.0	2.2-6.0	2.2	2.2-5.2
Sinuosity (stream length/valley length) (K)	1.03	1.47	1.00	1.18	1.14	1.18	1.45	1.16
Bank Height Ratio (BHR)	2.3-3.3	1.9-2.0	2.0	1.0	1.0	1.0	1.0	1.0
Mean Bankfull Velocity (V) (fps)	4.3-4.6	3.2-3.7	2.8	3.3	3.4	4	4.1	4.5
Bankfull Discharge (Q) (cfs)	44.7-45.0	65.7-68.2	71.3	24.7	30.5	44.3	62.9	68.6
Average water surface slope	0.011	0.006	0.013	0.007	0.004	0.011	0.007	0.012

Variables	Existing	Ref. Reach	Proposed	
variables	T1A-3	UTFR	T1A-3	
Rosgen Stream Type	F4	B4c	B4c/C4	
Mitigation Type	Restoration	N/A	Restoration	
Drainage Area (mi ²)	0.05	0.4	0.05	
Bankfull Width (W _{bkf}) (ft)	9.3	9.0-10.0	6.0	
Bankfull Mean Depth (d _{bkf}) (ft)	0.5	1.1-1.2	0.5	
Bankfull Cross-Sectional area (A _{bkf}) (ft ²)	4.3	10.4-10.7	3.2	
Width/depth Ratio (W _{bkf} /d _{bkf})	20.1	8.0-10.0	11.2	
Maximum Depth (d _{mbkf}) (ft)	0.7	1.3-1.5	0.9	
Width of flood prone area (W_{fpa}) (ft)	10.0	13-21	14	
Entrenchment Ratio (ER)	1.1	1.3-2.3	2.2	
Sinuosity (stream length/valley length) (K)	1.06	1.20	1.09	
Bank Height Ratio (BHR)	8.6	1.0	1.0	
Mean Bankfull Velocity (V) (fps)	2.5	4.1-4.5	3.6	
Bankfull Discharge (Q) (cfs)	10.8	42-46	11.6	
Average water surface slope	0.018	0.013	0.017	

Variables	Existing	Ref. Reach UT	Proposed	
Variables	T1A-1, T1A-2	to Wilkinson	T1A-1, T1A-2	
Rosgen Stream Type	C4	B4c	B4c/C4	
Mitigation Type	Enh. I/Enh. II	N/A	Enh. I, Enh. II	
Drainage Area (mi ²)	0.05	0.15	0.05	
Bankfull Width (W _{bkf}) (ft)	12.7	7.7 - 10.8	7.0	
Bankfull Mean Depth (d _{bkf}) (ft)	0.4	0.7 - 0.9	0.6	
Bankfull Cross-Sectional area (A _{bkf}) (ft ²)	4.5	6.1 - 8.8	3.9	
Width/depth Ratio (W _{bkf} /d _{bkf})	35.8	8.5 - 11.4	12.5	
Maximum Depth (d _{mbkf}) (ft)	0.9	1.3 - 1.7	0.9	
Width of flood prone area (W_{fpa}) (ft)	30	13.0 - 16.0	15	
Entrenchment Ratio (ER)	2.4	1.6 - 2.1	2.2	
Sinuosity (stream length/valley length) (K)	1.11	1.20	1.11	
Bank Height Ratio (BHR)	1.0	1.0	1.0	
Mean Bankfull Velocity (V) (fps)	2.2	5.1-5.8	2.9	
Bankfull Discharge (Q) (cfs)	10.6	31.0-49.0	11.5	
Average water surface slope	0.015	0.012	0.012	

7.5 Sediment Transport Analysis

In order to analyze the existing sediment conditions within the project streams, the bar sampling method was utilized at Jacob's Ladder Stream Restoration Site. In addition, the streams were sampled by the pebble count method at seven sites along all reaches for trend analysis. These data are provided in Appendix C. In order to analyze the existing sediment conditions within the project streams, bar samples were taken from the Jacob's Ladder Stream Restoration Site. In addition, the streams were sampled using the Wolman pebble count method at six sites along all reaches for trend analysis. These data are provided in Appendix C. Based on this analysis, the majority of the project reaches are dominated by gravel material with portions of sand in the smaller, headwater reaches.

After analyzing the existing sediment conditions, the site was studied with respect to proposed sediment transport. In active bed systems, there is a threshold level of bedload movement. At low flow levels, only the smallest particles will move, with the larger particles resisting the flow of the stream; this is the condition of partial sediment transport. As the stream flow increases, eventually every particle on the streambed will show threshold movement. This is the condition of full sediment transport. If the largest particle that moves during a bankfull event can be identified, then the flow conditions that produced this movement can be determined and this flow condition (channel competency) can be used in the design of the restored stream. Determinations of the design shear stresses were made based on the sediment distribution from the surface and subsurface sampling.

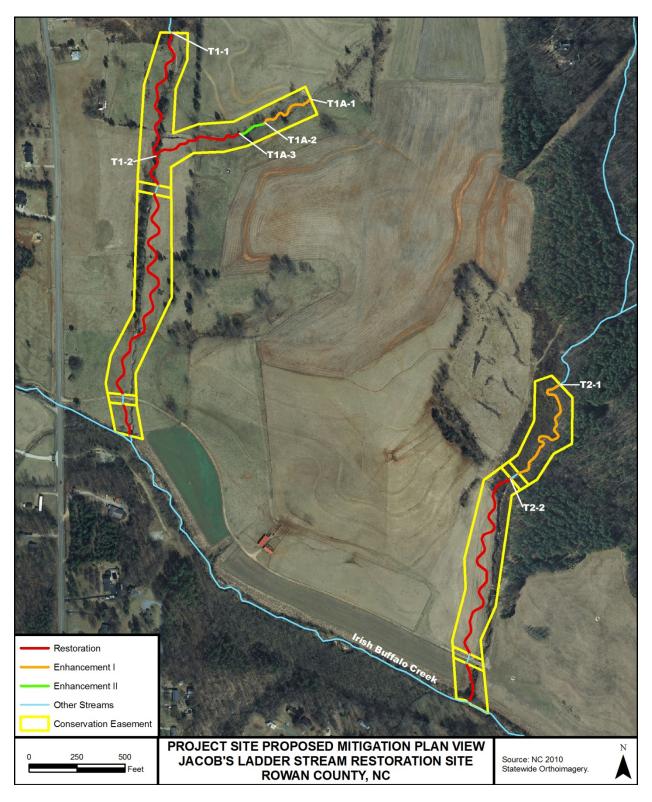
These shear stresses were validated for the proposed riffle cross-sections and channel gradient using the equation below. The shear stress values for the designed reaches were calculated and related to the movement of a particular grain size using Shield's threshold of motion curve (See Table 7.) (Shields *et al.* 1936). An approximate bedload transport rate was modeled using the Wilcock and Crowe model for mixed gravel-sand systems using the existing surface (pebble count) data.

 $\tau = \gamma Rs$

Where: τ = shear stress (lb/ft²) γ = specific gravity of water (62.4 lb/ft³) R = hydraulic radius (ft) s = average water slope (ft/ft)

Project Reach	Shear Stress at Designed Reaches (lb/sq. ft)	Largest Grain Diameter Mobilized (mm)	Equivalent Grain Type	Bedload Transport Rate (lb/min)
T1-1	0.21	15	Medium Gravel	43
T1-2	0.63	48	Very Coarse Gravel	123
T1A-1	0.53	41	Very Coarse Gravel	N/A
T1A-2	0.33	25	Coarse Gravel	N/A
T1A-3	0.54	41	Very Coarse Gravel	N/A
T2-1	0.47	36	Very Coarse Gravel	106
T2-2	0.81	63	Very Coarse Gravel	478

Table 7. Sediment Analysis


The predicted mobilized material size and bedload transport rates are appropriate for the gravel material existing within the project streams. The project streams all have small watershed areas that drain to them and the incoming sediment supply is limited. Currently, the smaller-sized sands and fine gravels within

the project streams are coming from active bank erosion. This source of sediment will be greatly reduced following the project restoration.

Tributary 1A is a threshold channel, which is defined as a stream where the bed material inflow is negligible and the channel boundary is immobile even at high flows (Shields *et al.* 2003). At the Jacob's Ladder Stream Restoration Site, this tributary is a threshold channel due to the lack of incoming bed material from the small surrounding watershed. Existing bed sediment in this channel was limited to silt introduced from eroding banks and underlain by a stable gravel layer. As opposed to an active bed system, a threshold channel never achieves full sediment transport; the system only achieves partial sediment transport. Therefore, the bedload rates provided for the other tributaries are not relevant for the reaches of T1A. The riffles installed in T1A will be constructed with stabilized rock material due to the lack of a mobile bed and the steep slope as the stream flows into the confluence with T1.

Based on this analysis, the designed channels provide sufficient competency for the type of streams proposed and are capable of transporting sediment during bankfull events.

7.6 Proposed Mitigation Plan View

8.0 MAINTENANCE PLAN

KCI shall monitor the site on a regular basis and shall conduct a physical inspection of the site a minimum of once per year throughout the post-construction monitoring period until performance standards are met. These site inspections may identify site components and features that require routine maintenance. Routine maintenance should be expected most often in the first two years following site construction and may include the following:

Component/Feature	Maintenance Through Project Close-Out
Stream	Routine channel maintenance and repair activities may include chinking of in- stream structures to prevent piping, securing of loose coir matting, and supplemental installations of live stakes and other target vegetation along the channel. Areas where stormwater and floodplain flows intercept the channel may also require maintenance to prevent bank failures and head-cutting.
Vegetation	Vegetation shall be maintained to ensure the health and vigor of the targeted plant community. Routine vegetation maintenance and repair activities may include supplemental planting, pruning, mulching, and fertilizing. Exotic invasive plant species shall be controlled by mechanical and/or chemical methods. Any vegetation control requiring herbicide application will be performed in accordance with NC Department of Agriculture (NCDA) rules and regulations.
Site Boundary	Site boundaries shall be identified in the field to ensure clear distinction between the mitigation site and adjacent properties. Boundaries may be identified by fence, marker, bollard, post, tree-blazing, or other means as allowed by site conditions and/or conservation easement. Boundary markers disturbed, damaged, or destroyed will be repaired and/or replaced on an as needed basis.
Utility Right-of- Way	Utility rights-of-way within the site may be maintained only as allowed by Conservation Easement or existing easement, deed restrictions, rights of way, or corridor agreements.
Road Crossing	Road crossings within the site may be maintained only as allowed by Conservation Easement or existing easement, deed restrictions, rights of way, or corridor agreements.

9.0 PERFORMANCE STANDARDS

Monitoring of the Jacob's Ladder Stream Restoration Site shall consist of the collection and analysis of stream stability and riparian/stream bank vegetation survivability data to support the evaluation of the project in meeting established restoration objectives. Specifically, project success will be assessed utilizing measurements of stream dimension and profile; site photographs, and vegetation sampling.

The purpose of monitoring is to evaluate the stability of the restored stream. Following the procedures established in the USDA Forest Service Manual, *Stream Channel Reference Sites* (Harrelson *et al.* 1994) and the methodologies utilized in the Rosgen stream assessment and classification system (Rosgen D.L. 1994 and 1996), data collected will consist of detailed dimension measurements, longitudinal profiles, and bed materials sampling.

Dimension

Permanent cross-sections will be established along the restored and enhanced reaches and will be used to evaluate stream dimension stability. Permanent monuments will be established at the left and right extents of each cross-section by either conventional survey or GPS. The cross-section surveys shall provide a detailed measurement of the stream and banks and will include points on the adjacent floodplain or

valley, at the top of bank, bankfull, at all breaks in slope, the edge of water, and thalweg. Width/depth and entrenchment ratios will be calculated for each cross-section based on the survey data.

Cross-section measurements should show little or no change from the as-built cross-sections. If changes do occur, they will be evaluated to determine whether they are minor adjustments associated with settling and increased stability or whether they indicate movement toward an unstable condition.

Profile

A 3,000 linear foot detailed longitudinal profile will be conducted along portions of T1, T2, and T1A. Measurements will include slopes (average, pool, and riffle) as well as calculations of pool-to-pool spacing. Annual measurements should indicate that bedform features are stable with little change from the as-built survey. The pools should maintain their depth with lower water surface slopes, while the riffles should remain shallower and steeper than the average values for the stream.

Bed Materials

Pebble counts will be conducted at each monitored riffle cross-section for the purpose of repeated classification and to evaluate sediment transport.

Verification of Bankfull Events

During the monitoring period, a minimum of two bankfull events must be recorded within the five-year monitoring period. These two bankfull events must occur in separate monitoring years. Bankfull events will be verified using automatic stream monitoring gauges to record daily stream depth readings.

Photograph Reference Points

Permanent photograph reference points will be established to assist in characterizing the site and to allow qualitative evaluation of the site conditions. The location and bearing/orientation of each photo point will be documented to allow for repeated use.

Cross-section Photograph Reference Points

Each cross-section will be photographed to show the form of the channel with the tape measure stretched over the channel for reference in each photograph. An effort will be made to consistently show the same area in each photograph.

Visual Assessment

An annual site walk will be conducted at the end of each monitoring period to document any stream problem areas. Specific problem areas that could arise include excessive bank erosion, bed deposition or aggradation, or problems with the installed structures. The findings of the visual assessment as well as any recommended corrective actions for problem areas will be summarized in the monitoring reports by way of a Current Conditions Plan View figure.

Vegetation

The success of the riparian buffer plantings will be evaluated using sixteen, ten-by-ten meter vegetative sampling plots and will use the CVS-EEP version 4.2, stream vegetation monitoring protocol (Lee *et al.* 2008). The corners of each monitoring plot will be permanently marked in the field. The coordinates of the plot corners will be recorded using conventional survey. The monitoring will consist of the following data inventory: composition and number of surviving species, total number of stems per acre, diameter at breast height for trees greater than 5 feet in height, and vigor. Additionally, a photograph will be taken of each plot that will be replicated each monitoring year. Riparian vegetation must meet a minimum survival success rate of 320 stems/acre after three years, 288 stems/acre after four years, and 260 stems/acre after five years. If monitoring indicates that the specified survival rate is not being met, appropriate corrective

actions will take place, which may include invasive species control, the removal of dead/dying plants and replanting.

10.0 MONITORING REQUIREMENTS

The first scheduled monitoring will be conducted during the first full growing season following project completion. Monitoring shall subsequently be conducted annually for a total period of five years or until the project meets its success criteria.

Beginning at the end of the first growing season, KCI will monitor the planted vegetation for five years or until the success criterion is met. Annual monitoring reports will be prepared and submitted after all monitoring tasks for each year are completed. The report will document the monitored components and include all collected data, analyses, and photographs. Each report will provide the new monitoring data and compare the most recent results against previous findings. Monitoring will also include evaluating the site for potential maintenance needs, including but not limited to invasive species problems, stream channel instability, riparian vegetation survival, floodplain scour and easement violations or encroachments. If problems arise, maintenance will occur to address the problem area. Maintenance will occur throughout the monitoring period on an as-needed basis. Specific maintenance activities, including any easement violations or encroachments will be documented in yearly monitoring reports. The monitoring report format will be similar to that set out in the most recent EEP monitoring protocol.

Required	Parameter	Quantity	Frequency	Notes
Yes	Pattern		Once, during as-built survey	
Yes	Dimension	10 Cross-sections	annual	To be distributed throughout the project reaches.
Yes	Profile	3,000 linear feet	annual	Profile will include sections of all project reaches
Yes	Substrate	Pebble counts at permanent riffle cross-sections	annual	
Yes	Surface Water Hydrology	Two, one each on T1 and T2.	annual	Two pressure transducer gauges will be installed on site; the devices will be inspected every two months to document the occurrence of bankfull events on the project
Yes	Vegetation	A total of 16 plots will be distributed to ensure sufficient coverage of planted vegetation	annual	Vegetation will be monitored using the Carolina Vegetation Survey (CVS) protocols
Yes	Exotic and nuisance vegetation		annual	Locations of exotic and nuisance vegetation will be mapped
Yes	Project boundary		annual	Locations of fence damage, vegetation damage, boundary encroachments, etc. will be mapped

11.0 LONG-TERM MANAGEMENT PLAN

Upon approval for close-out by the Interagency Review Team (IRT), the site will be transferred to the NCDENR Division of Natural Resource Planning and Conservation's Stewardship Program. This party shall be responsible for periodic inspection of the site to ensure that restrictions required in the conservation easement are upheld. Endowment funds required to uphold easement and deed restrictions shall be negotiated prior to site transfer to the responsible party. Section III of the Conservation Easement allows perpetual Right of Access to the Grantee, its employees and agents at reasonable times to undertake any activities to restore, construct, manage, maintain, enhance and monitor the site. Although the Conservation Easement does not restrict how the Grantee can access the site, the Conservation Easement plat shows the preferred access route into the site for the convenience of the Conservation Stewardship Program.

The NCDENR Division of Natural Resource Planning and Conservation's Stewardship Program currently houses EEP stewardship endowments within the non-reverting, interest-bearing Conservation Lands Stewardship Endowment Account. The use of funds from the Endowment Account is governed by North Carolina General Statute GS 113A-232(d)(3). Interest gained by the endowment fund may be used only for the purpose of stewardship, monitoring, stewardship administration, and land transaction costs, if applicable. The NCDENR Stewardship Program intends to manage the account as a non-wasting endowment. Only interest generated from the endowment funds will be used to steward the compensatory mitigation sites. Interest funds not used for those purposes will be re-invested in the Endowment Account to offset losses due to inflation.

12.0 ADAPTIVE MANAGEMENT PLAN

Upon completion of site construction, KCI will implement the post-construction monitoring protocols previously defined in this document. Project maintenance will be performed as described previously in this document. If, during the course of annual monitoring it is determined the site's ability to achieve site performance standards are jeopardized, KCI will notify the EEP and the USACE of the need to develop a Plan of Corrective Action. Once the Corrective Action Plan is prepared and finalized KCI will:

- 1. Notify the EEP and USACE as required by the Nationwide 27 permit general conditions.
- 2. Revise performance standards, maintenance requirements, and monitoring requirements as necessary and/or required by the USACE.
- 3. Obtain other permits as necessary.
- 4. Implement the Corrective Action Plan.
- 5. Provide the USACE a Record Drawing of Corrective Actions. This document shall depict the extent and nature of the work performed.

13.0 FINANCIAL ASSURANCES

Pursuant to Section IV H and Appendix III of the Ecosystem Enhancement Program's In-Lieu Fee Instrument dated July 28, 2010, the North Carolina Department of Environment and Natural Resources has provided the U.S. Army Corps of Engineers Wilmington District with a formal commitment to fund projects to satisfy mitigation requirements assumed by EEP. This commitment provides financial assurance for all mitigation projects implemented by the program.

14.0 OTHER INFORMATION

14.1 Definitions

Morphological description – the stream type; stream type is determined by quantifying channel entrenchment, dimension, pattern, profile, and boundary materials; as described in Rosgen, D. (1996), *Applied River Morphology*, 2^{nd} edition

Native vegetation community – a distinct and reoccurring assemblage of populations of plants, animals, bacteria and fungi naturally associated with each other and their population; as described in Schafale, M.P. and Weakley, A. S. (1990), *Classification of the Natural Communities of North Carolina, Third Approximation*

Project Area - includes all protected lands associated with the mitigation project

14.2 References

- Benchmark, CMR, Inc. Rowan County 2009 Land Use Plan, Areas West of I-85. (http://www.rowancountync.gov/HOME.aspx).
- Harrelson, C.C., C.L. Rawlins, and J.P. Potyondy. 1994. Stream Channel Reference Sites: an Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2 (http://cvs.bio.unc.edu/methods.htm).
- NCDENR, Division of Water Quality. 2010. Methodology for Identification of Intermittent and Perennial Streams and Their Origins. Version 4.11. http://portal.ncdenr.org/c/document_library/get_file?uuid=0ddc6ea1-d736-4b55-8e50-169a4476de96&groupId=38364
- NCDENR, Division of Water Quality. 2012a. 2012 Draft North Carolina 303(d) list. Raleigh, NC. http://portal.ncdenr.org/web/wq/ps/mtu/assessment
- NCDENR, Division of Water Quality. 2012b. Surface Water Classifications. Last accessed April 25, 2012. http://portal.ncdenr.org/web/wq/ps/csu/classifications
- NCDENR, Ecosystem Enhancement Program. 2009. Lower Yadkin Pee-Dee River Basin Priorities 2009. Raleigh, NC. http://www.nceep.net/services/restplans/Yadkin_Pee_Dee_RBRP_2009_Final.pdf
- Pitlick, J., Y. Cui, and P. Wilcock. 2009. Manual for Computing Bedload Transport Using BAGS (Bedload Assessment for Gravel-bed Streams) Software. Gen. Tech. Rep. RMRS-GTR-223. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
- Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22: 169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Rosgen, D.L. 1997. A Geomorphological Approach to Restoration of Incised Rivers. In: Wang, S.S.Y., E.J. Langendoen, and F.D. Shields, Jr. (Eds.). Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision. pp. 12-22.
- Rosgen, D.L. 1998. The Reference Reach a Blueprint for Natural Channel Design. Presented at ASCE Conference, Denver, CO June, 1998.
- Rosgen, D.L. 2001. Practical Method of Computing Streambank Erosion Rate. Pagosa Springs, CO: Wildland Hydrology Books.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, 3rd Approximation. North Carolina Natural Heritage Program, NCDEHNR, Division of Parks and Recreation. Raleigh, NC.
- Shields, F.D., Jr. R.R. Copeland, P.C. Klingeman, M.W. Doyle, and A. Simon. 2003. Design for Stream Restoration. Journal of Hydraulic Engineering, 129 (8): 575-584.

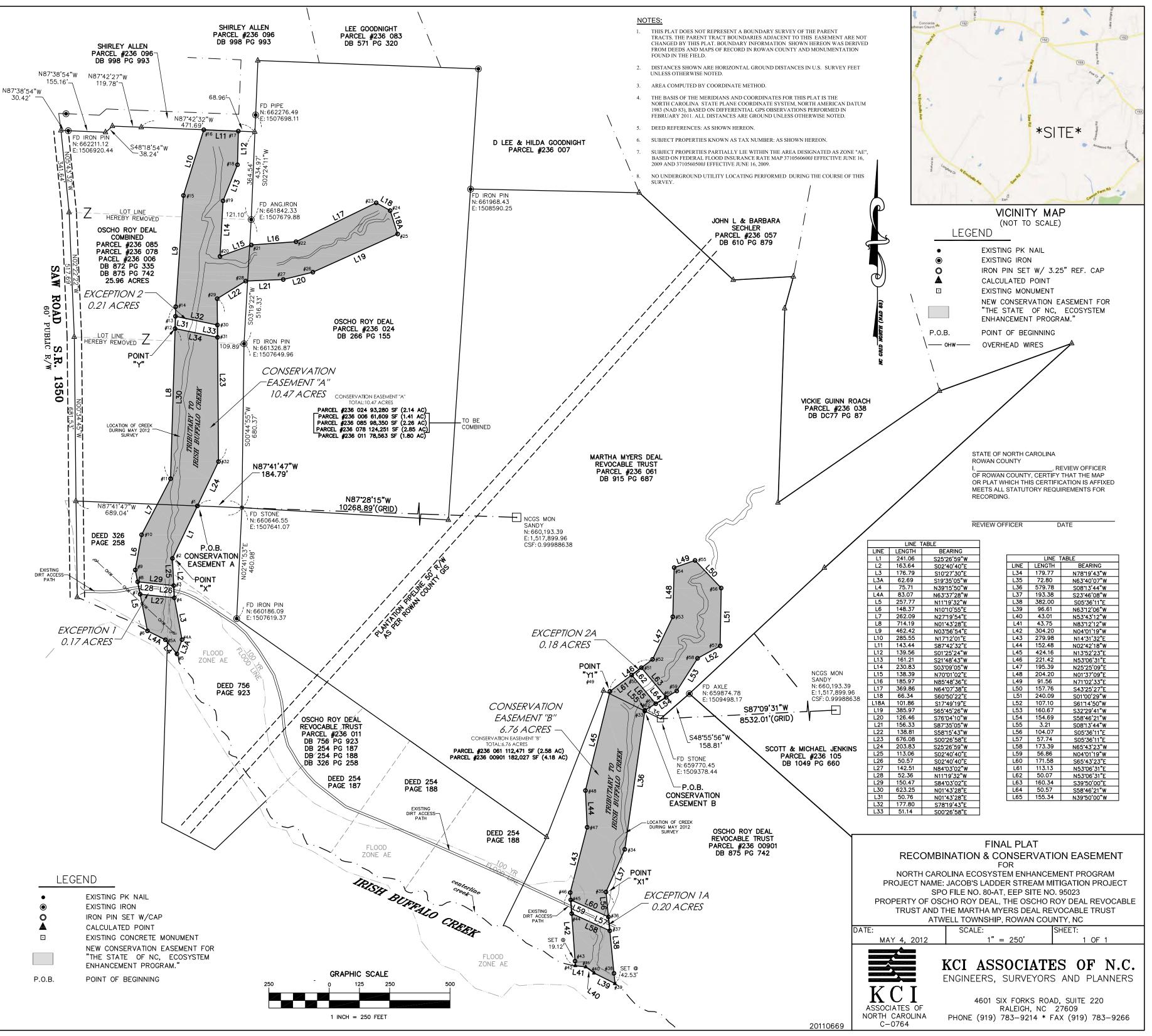
- Shields, Ing. A., W. P. Ott, and J. C. Van Uchelen. 1936. Application of Similarity Principles and Turbulence Research to Bed-load Movement. Pasadena, CA: Soil Conservation Service, California Institute of Technology
- US Army Corps of Engineers, Wilmington District, US Environmental Protection Agency, North Carolina Wildlife Resources Commission, and NCDENR, Division of Water Quality. 2003. Stream Mitigation Guidelines. Wilmington, NC.
- USDA, Natural Resources Conservation Service (NRCS). 2004. Soil Survey of Rowan County, North Carolina.
- Wilcock, P.R., and J.C. Crowe. 2003. Surface-based Transport Model for Mixed-size Sediment. ASCE Journal of Hydraulic Engineering, 129 (2): 120-128.
- Wildlands Engineering, Inc. 2010. Scaly Bark Creek Mitigation Site. Restoration Plan. Prepared for NCDENR, EEP.

Appendix A

Conservation Easement (Preliminary)

POINT	NORTHING	DINT TABLE EASTING	DESCRIPTION
1	660653.98	1507456.43	ESMT CORNER
2	660436.31	1507352.84	ESMT CORNER
3	660323.37	1507358.13	ESMT CORNER
4	660272.85	1507360.49	ESMT CORNER
4A	660099.00	1507392.58	ESMT CORNER
5	660039.93	1507371.57	ESMT CORNER
5A	660098.55	1507323.65	ESMT CORNER
6	660135.46	1507249.23	ESMT CORNER
7	660287.63	1507218.75	ESMT CORNER
8	660338.97	1507208.47	ESMT CORNER
9	660388.21	1507198.61	ESMT CORNER
10	660534.24	1507224.83	ESMT CORNER
11	660767.07	1507345.17	ESMT CORNER
12	661390.04	1507363.92	ESMT CORNER
13	661440.78	1507365.45	ESMT CORNER
14	661480.94	1507366.66	ESMT CORNER
15	661942.26	1507398.50	ESMT CORNER
16	662215.04	1507482.94	ESMT CORNER
17	662209.31	1507626.27	ESMT CORNER
18	662069.79	1507622.80	ESMT CORNER
19	661920.12	1507562.90	ESMT CORNER
20	661689.64	1507550.21	ESMT CORNER
21	661736.93	1507680.27	
22	661750.52	1507865.74	ESMT CORNER
23	661911.91	1508198.52	ESMT CORNER
24	661879.59	1508256.46	ESMT CORNER
25	661782.62	1508287.63	ESMT CORNER
26	661624.14	1507935.70	ESMT CORNER
27	661593.69	1507812.96	ESMT CORNER
28	661587.11	1507656.77	ESMT CORNER
29	661514.09	1507538.72	ESMT CORNER
30	661404.81	1507539.58	ESMT CORNER
31	661353.67	1507539.98	
32	660838.03	1507544.02	ESMT CORNER
33	659802.74	1509313.19	ESMT CORNER
34	659228.93	1509230.21	ESMT CORNER
35	659051.95	1509152.27	ESMT CORNER
36	658948.37	1509162.43	ESMT CORNER
37	658890.91	1509168.07	ESMT CORNER
38	658714.10	1509185.41	ESMT CORNER
39	658671.78	1509189.56	ESMT CORNER
40	658715.33	1509103.33	ESMT CORNER
41			
41	658740.78	1509068.66	
	658745.96	1509025.21	ESMT CORNER
43	658765.04	1509023.87	ESMT CORNER
44	658962.20	1509010.01	ESMT CORNER
45	659018.92	1509006.02	ESMT CORNER
46	659049.41	1509003.88	ESMT CORNER
47	659320.44	1509074.10	ESMT CORNER
48	659472.75	1509066.90	ESMT CORNER
49	659884.54	1509168.61	ESMT CORNER
50	659952.45	1509259.09	ESMT CORNER
51	659982.51	1509299.13	ESMT CORNER
52	660017.45	1509345.69	ESMT CORNER
53	660193.92	1509429.56	ESMT CORNER
54	660398.04	1509435.33	ESMT CORNER
55	660427.79	1509521.92	ESMT CORNER
56	660313.21	1509630.37	ESMT CORNER
57	660073.15	1509626.14	ESMT CORNER
58	660021.64	1509532.25	ESMT CORNER
59	659886.12	1509445.93	ESMT CORNER
60	659859.38	1509401.83	ESMT CORNER
	659833.16	1509358.59	ESMT CORNER
61			

I, JAMES M. GELLENTHIN, HEREBY DECLARE THAT THIS MAP WAS DRAWN UNDER MY SUPERVISION FROM A SURVEY MADE UNDER MY SUPERVISION, THAT THE BOUNDARIES NOT SURVEYED ARE CLEARLY INDICATED, AS DRAWN FROM INFORMATION AS SHOWN HEREON; THAT THE RATIO OF PRECISION AS CALCULATED IS GREATER THAN 1:10,000; THAT THIS MAP DOES REPRESENT AN OFFICIAL BOUNDARY SURVEY AND HAS BEEN PREPARED IN ACCORDANCE WITH G.S. 47-30 AS AMENDED. WITNESS MY ORIGINAL SIGNATURE, REGISTRATION NUMBER AND SEAL THIS 16TH DAY OF FEBRUARY, 2007


NORTH CAROLINA REGISTRATION NUMBER L-3860 JAMES M. GELLENTHIN


I, JAMES M. GELLENTHIN, PROFESSIONAL LAND SURVEYOR, NO. L-3860 CERTIFY TO THE FOLLOWING AS REQUIRED IN G.S. 47-30 (F)(11): THAT THE SURVEY IS OF ANOTHER CATEGORY, SUCH AS THE RECOMBINATION OF EXISTING PARCELS, A COURT ORDERED SURVEY, OR OTHER EXCEPTION TO THE DEFINITION OF SUBDIVISION.

NORTH CAROLINA REGISTRATION NUMBER L-3860 JAMES M. GELLENTHIN

STATE OF NORTH CAROLINA ROWAN COUNTY

PRESENTED FOR REGISTRATION AND RECORDED IN THIS OFFICE IN BOOK OF MAPS DAY OF PAGE THIS THE , 2012

Appendix B

Baseline Information Data

FHWA Categorical Exclusion Form

Categorical Exclusion Form for Ecosystem Enhancement Program Projects Version 1.4

Note: Only Appendix A should to be submitted (along with any supporting documentation) as the environmental document.

Project Name:	t 1: General Project Information
Cartant Nava at	Jacob's Ladder Stream Restoration Project
County Name:	Rowan
EEP Number:	003983
Project Sponsor:	NC Ecosystem Enhancement Program (EEP) / KCI Technologies, Inc.
Project Contact Name:	Tim Morris
Project Contact Address:	4601 Six Forks Road, Suite 220, Raleigh NC 27609
Project Contact E-mail:	tim.morris@kci.com
EEP Project Manager:	Guy Pearce
	Project Description
stream restoration project intends to re Buffalo Creek in southwestern Rowan	store approximately 4,935 linear feet of tributary stream draining to Irish County.
	Fre Official Line Only
	For Official Use Only
Reviewed By:	()
Date	Albenha Janul EEP Project Manager
Conditional Approximal Dur	
Conditional Approved By:	
Date	For Division Administrator FHWA
Date	FHWA
	FHWA
Check this box if there are	FHWA

For Division Administrato

RECEIVED

OCT = 5 2011

NC ECOSYSTEM ENHANCEMENT PROGRAM Version 1.4, 8/18/05

Part 2: All Projects	
Regulation/Question	Response
Coastal Zone Management Act (CZMA)	
1. Is the project located in a CAMA county?	🗌 Yes
	No No
2. Does the project involve ground-disturbing activities within a CAMA Area of	☐ Yes
Environmental Concern (AEC)?	
	□ N/A
3. Has a CAMA permit been secured?	
	│ No │ N/A
4. Has NCDCM agreed that the project is consistent with the NC Coastal Management	
Program?	
Comprehensive Environmental Response, Compensation and Liability Act (C	
1. Is this a "full-delivery" project?	Yes
2. Has the zoning/land use of the subject property and adjacent properties ever been	☐ Yes
designated as commercial or industrial?	🗌 No
	🗍 N/A
3. As a result of a limited Phase I Site Assessment, are there known or potential	🗌 Yes
hazardous waste sites within or adjacent to the project area?	🗌 No
	□ N/A
4. As a result of a Phase I Site Assessment, are there known or potential hazardous	🗌 Yes
waste sites within or adjacent to the project area?	🗌 No
	<u> </u>
5. As a result of a Phase II Site Assessment, are there known or potential hazardous	
waste sites within the project area?	
C le there on ensured honordaux mitigation plan?	
6. Is there an approved hazardous mitigation plan?	☐ Yes ☐ No
National Historic Preservation Act (Section 106)	
1. Are there properties listed on, or eligible for listing on, the National Register of	☐ Yes
Historic Places in the project area?	
2. Does the project affect such properties and does the SHPO/THPO concur?	
	□ N/A
3. If the effects are adverse, have they been resolved?	Yes
	🗌 No
	🗌 N/A
Uniform Relocation Assistance and Real Property Acquisition Policies Act (Un	
1. Is this a "full-delivery" project?	🗌 Yes
	No No
2. Does the project require the acquisition of real estate?	Yes
	□ N/A
3. Was the property acquisition completed prior to the intent to use federal funds?	
4. Has the owner of the property been informed:	
 4. Has the owner of the property been informed: * prior to making an offer that the agency does not have condemnation authority; and 	☐ Yes ☐ No
* what the fair market value is believed to be?	

Dest 2. Organized Disturbing Activities			
Part 3: Ground-Disturbing Activities Regulation/Question	Response		
American Indian Religious Freedom Act (AIRFA)			
1. Is the project located in a county claimed as "territory" by the Eastern Band of Cherokee Indians?	☐ Yes ☐ No		
2. Is the site of religious importance to American Indians?	☐ Yes ☐ No ☐ N/A		
3. Is the project listed on, or eligible for listing on, the National Register of Historic Places?	☐ Yes ☐ No ☐ N/A		
4. Have the effects of the project on this site been considered?	☐ Yes ☐ No ☐ N/A		
Antiquities Act (AA)			
1. Is the project located on Federal lands?	Yes No		
2. Will there be loss or destruction of historic or prehistoric ruins, monuments or objects of antiquity?	☐ Yes ☐ No ☐ N/A		
3. Will a permit from the appropriate Federal agency be required?	☐ Yes ☐ No ☐ N/A		
4. Has a permit been obtained?	☐ Yes ☐ No ☐ N/A		
Archaeological Resources Protection Act (ARPA)			
1. Is the project located on federal or Indian lands (reservation)?	☐ Yes ☐ No		
2. Will there be a loss or destruction of archaeological resources?	☐ Yes ☐ No ☐ N/A		
3. Will a permit from the appropriate Federal agency be required?	☐ Yes ☐ No ☐ N/A		
4. Has a permit been obtained?	☐ Yes ☐ No ☐ N/A		
Endangered Species Act (ESA)			
1. Are federal Threatened and Endangered species and/or Designated Critical Habitat listed for the county?	☐ Yes ☐ No		
2. Is Designated Critical Habitat or suitable habitat present for listed species?	☐ Yes ☐ No ☐ N/A		
3. Are T&E species present or is the project being conducted in Designated Critical Habitat?	☐ Yes ☐ No ☐ N/A		
4. Is the project "likely to adversely affect" the species and/or "likely to adversely modify" Designated Critical Habitat?	☐ Yes ☐ No ☐ N/A		
5. Does the USFWS/NOAA-Fisheries concur in the effects determination?	☐ Yes ☐ No ☐ N/A		
6. Has the USFWS/NOAA-Fisheries rendered a "jeopardy" determination?	☐ Yes ☐ No ☐ N/A		

Executive Order 13007 (Indian Sacred Sites)	
1. Is the project located on Federal lands that are within a county claimed as "territory" by the EBCI?	☐ Yes ☐ No
2. Has the EBCI indicated that Indian sacred sites may be impacted by the proposed project?	☐ Yes ☐ No
	🗍 N/A
3. Have accommodations been made for access to and ceremonial use of Indian sacred sites?	☐ Yes ☐ No
Farmland Protection Policy Act (FPPA)	N/A
1. Will real estate be acquired?	Yes No
2. Has NRCS determined that the project contains prime, unique, statewide or locally important farmland?	☐ Yes ☐ No ☐ N/A
3. Has the completed Form AD-1006 been submitted to NRCS?	☐ Yes ☐ No ☐ N/A
Fish and Wildlife Coordination Act (FWCA)	
1. Will the project impound, divert, channel deepen, or otherwise control/modify any	☐ Yes
water body?	🗌 No
2. Have the USFWS and the NCWRC been consulted?	└ Yes □ No
Land and Water Conservation Fund Act (Section 6(f))	
1. Will the project require the conversion of such property to a use other than public, outdoor recreation?	☐ Yes ☐ No
2. Has the NPS approved of the conversion?	
	□ No □ N/A
Magnuson-Stevens Fishery Conservation and Management Act (Essential Fisher)	
1. Is the project located in an estuarine system?	Yes
	🗌 No
2. Is suitable habitat present for EFH-protected species?	☐ Yes ☐ No
	□ N/A
3. Is sufficient design information available to make a determination of the effect of the	Yes
project on EFH?	□ No □ N/A
4. Will the project adversely affect EFH?	Yes
	□ No □ N/A
5. Has consultation with NOAA-Fisheries occurred?	
	🗍 No
	□ N/A
Migratory Bird Treaty Act (MBTA)	
1. Does the USFWS have any recommendations with the project relative to the MBTA?	☐ Yes ☐ No
2. Have the USFWS recommendations been incorporated?	☐ Yes ☐ No
Wilderness Act	
1. Is the project in a Wilderness area?	🗌 Yes
2. Has a special use permit and/or easement been obtained from the maintaining federal agency?	└ Yes │ No

FEMA Compliance

EEP Floodplain Requirements Checklist

This form was developed by the National Flood Insurance program, NC Floodplain Mapping program and Ecosystem Enhancement Program to be filled for all EEP projects. The form is intended to summarize the floodplain requirements during the design phase of the projects. The form should be submitted to the Local Floodplain Administrator with three copies submitted to NFIP (attn. Edward Curtis), NC Floodplain Mapping Unit (attn. John Gerber) and NC Ecosystem Enhancement Program.

Name of project:	Jacob's Ladder Stream Restoration Site
Name if stream or feature:	Tributaries to Irish Buffalo Creek
County:	Rowan
Name of river basin:	Lower Yadkin Pee-Dee River Basin
Is project urban or rural?	Rural
Name of Jurisdictional municipality/county:	Rowan
DFIRM panel number for entire site:	5606 and 5605
Consultant name:	KCI Technologies/Kristin Knight-Meng
Phone number:	919-923-2854
Address:	4601 Six Forks Road Suite 220 Raleigh, NC 27609

Project Location

Design Information

Provide a general description of project (one paragraph). Include project limits on a reference orthophotograph at a scale of $1^{"} = 500"$.

The Jacob's Ladder Stream Restoration Site involves the restoration of streams impacted by channelization, cattle, and riparian vegetation removal. The proposed project will restore three unnamed tributaries (T1, T1A, and T2) that flow into Irish Buffalo Creek. The restoration will return the streams to natural meander patterns and will involve planting riparian vegetation within the extent of the conservation easement. The confluences of T1 and T2 are in the backwater of the Irish Buffalo Creek floodplain. The restored channels of T1 and T2 will be tied into Irish Buffalo Creek at the same existing confluence locations.

Summarize stream reaches or wetland areas according to their restoration priority.

Reach	Length (Linear Feet)	Priority P1, Restoration	
T1-1	739		
T1-2	1,622 P1, Restoration		
T2-1	775 Enhancement I		
T2-2	1,334 P1, Restoration		
T1A-1	306 Enhancement I		
T1A-2	A-2 140 Enhancement II		
T1A-3	A-3 498 P1, Restoration		

Floodplain Information

Is project locat	ed in a Special Flood Hazard Area (SFHA)?	
• Yes	C No	
If project is lo	cated in a SFHA, check how it was determined:	
T Redelineatio	a	
Detailed Stu	ly	
□ Limited Deta	il Study	
□ Approximate	Study	
□ Don't know		
List flood zone	e designation: Zone AE	
Check if applie	25:	
AE Zone		
Floo	dway	

C Non-Encroachment

C None

□ A Zone

C Local Setbacks Required

O No Local Setbacks Required

If local setbacks are required, list how many feet:

Does proposed channel boundary encroach outside floodway/nonencroachment/setbacks?

⊂ Yes

No

Land Acquisition (Check)

□ State owned (fee simple)

Conservation easment (Design Bid Build)

Conservation Easement (Full Delivery Project)

Note: if the project property is state-owned, then all requirements should be addressed to the Department of Administration, State Construction Office (attn: Herbert Neily, (919) 807-4101)

Is community/county participating in the NFIP program?

C No

Yes

Note: if community is not participating, then all requirements should be addressed to NFIP (attn: Edward Curtis, (919) 715-8000 x369)

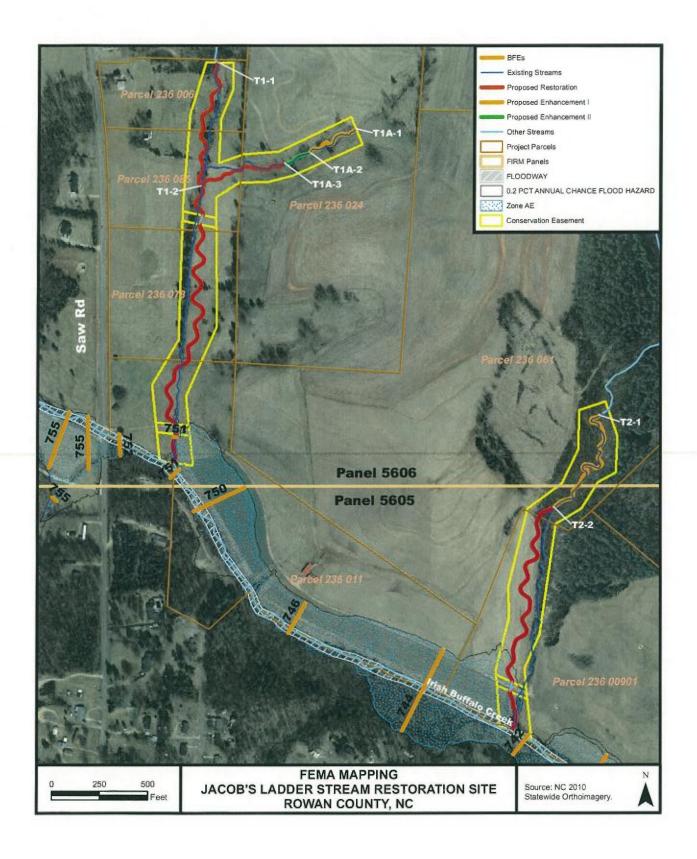
Name of Local Floodplain Administrator: Phone Number:

Floodplain Requirements

This section to be filled by designer/applicant following verification with the LFPA

□ No Action

□ No Rise


□ Letter of Map Revision

Conditional Letter of Map Revision

Other Requirements

List other requirements: County floodplain development permit and a statement certified by a PE that there would be no hydraulic impacts such as berms built or banks extended on the portion that is within the floodway.

Comm	ents:	
		0
Name:	GARY M. MRYNCZA	Signature:
		Date: 06.21.12

Rowan County Department of Planning & Development 402 North Main Street Salisbury, NC 28144 Phone (704) 216-8588 Fax (704) 638-3130 www.rowancountync.gov

FLOOD PLAIN DEVELOPMENT PERMIT

This permit is required prior to any development* within or adjacent to a regulated flood plain.

Owner Name:	Oscho Deal / (Conserv. Esmt to be owned	d by State of NC)	Phone #:	N/A
Applicant Name:	KCI Technologies, Inc. ATTN: Tim Morris	, Project Manager	Phone #:	(919) 278-2511
Property Location:	350 Saw Rd, China Grove, NC 28	3023	Tax Parcel	s): 236 00901, 236 011
Zoning Jurisdiction:	RR App	plication Date	: June 21, 2	2012

* Development - means any man-made change to improved or unimproved real estate including, but not limited to, buildings or other structures, mining, dredging, filling, grading, paving, excavation or drilling operations, or storage of equipment or materials.

Type of Development (check all that apply):					
Residential:	Non-re	sidential:	Addition:	Renovation:	
Fill:	_Grading:	Other (specify):	Stream Restoration Project for Sta	e of North Carolina, Ecosystem Enhancement Program	

Provide a plot plan prepared by a professional land surveyor or engineer containing the following information**:

Location, dimensions, and elevations (to the 1/10 foot accuracy) of the area of development.

Existing and proposed structures, utility systems, grading / pavement areas, fill materials, storage areas, drainage facilities, and any other development.

Boundary of regulated flood plain, BFE (to the 1/10 foot accuracy), and floodway / non-encroachment area as indicated on the FIRM / FIS.

Old and new location of any watercourse that will be altered or relocated as a result of the proposed development (if applicable).

** In lieu of this requirement, the Floodplain Administrator may provide necessary certifications for development adjacent to but not within the regulated flood plain.

FIRM Data: Flood Zone (check one): Al	E X Map Panel(s) #: 5605, 5606
Within Floodway/Non-end	croachment	at Area? (check one): Yes No 🖌 NA
BFE at development site:	751; 742	_ NAVD 88
Regulatory Flood Protecti	on Elevatio	ON (BFE plus 2 foot freeboard): 753; 744 NAVD 88

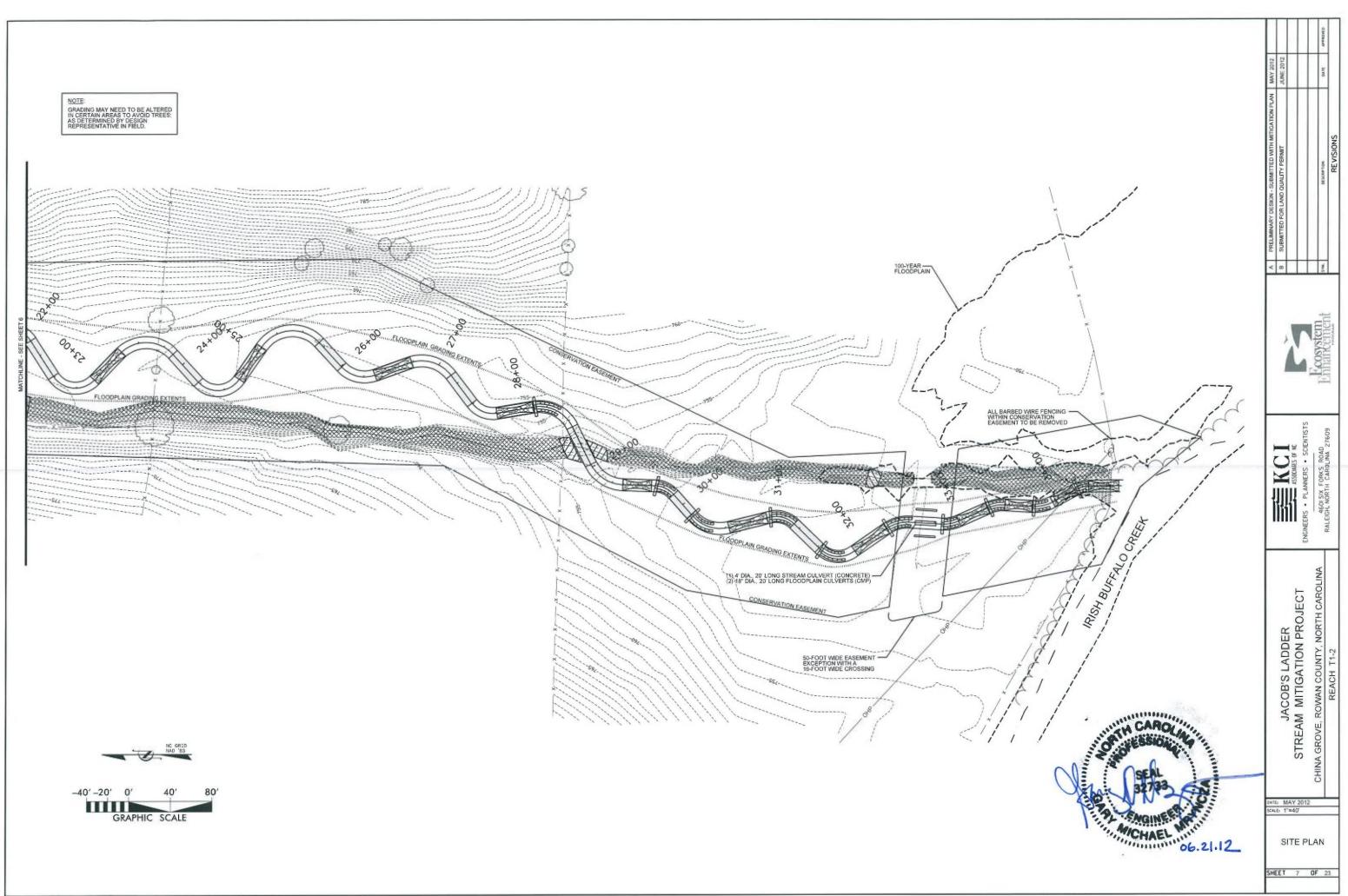
SUBMIT ELEVATION CERTIFIATE (FEMA FORM 81-31) OR FLOOD PROOFING CERTIFICATE (FEMA FORM 81-65) FOR DEVELOPMENT WITHIN THE REGULATED FLOODPLAIN.

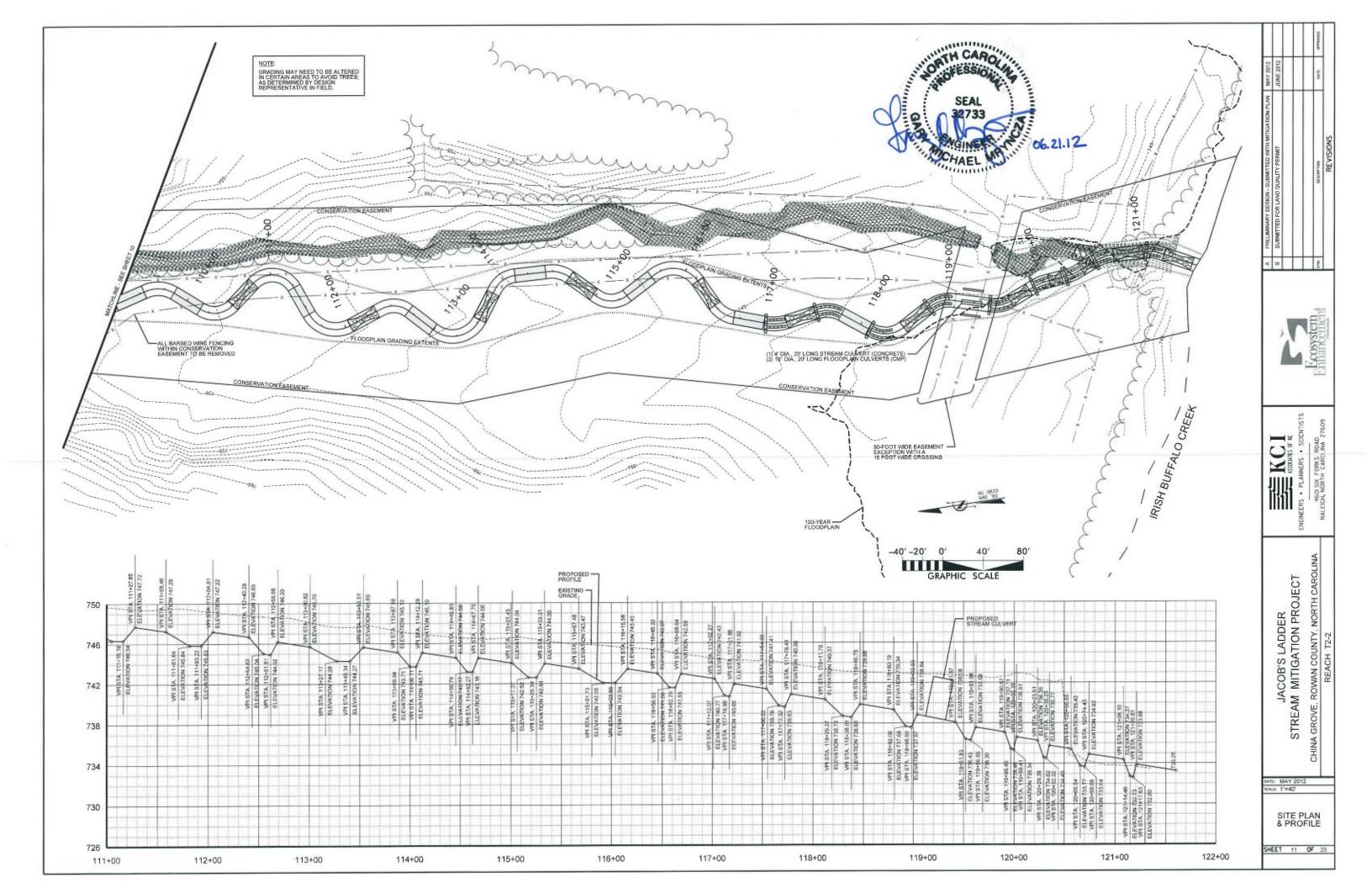
1

If the development is proposed within a regulated flood plain, the following development standards apply:

- Elevation which lowest floor (including basement) must be constructed at or above: <u>N/A</u> NAVD 88 (measured from the bottom of the lowest horizontal structural member of the lowest floor).
- Will garage (if applicable) be used for any purpose other than parking vehicles, building access, or limited storage as defined by Section 9-52 (4)? Yes No If yes, then the garage must be used in determining the lowest floor elevation. N/A
- 3. Elevation at or above which all supporting utilities (HVAC, electrical, plumbing, etc.) must be installed: N/A NAVD 88
- 4. Submit foundation plan, drawn to scale, indicating details of the foundation system including all information required by Section 9-32 (1)(d).
- 5. Elevation to which structure will be flood proofed (non-residential only) N/A NAVD 88
- 6. Other Restrictions:

The following information, if indicated, is required after issuance of the development permit:


If any portion of a proposed structure is within a regulated flood plain, an elevation certificate is required **within 7 calendar days** of establishment of the lowest floor elevation. A final asbuilt elevation certificate is also required **prior to issuing a certificate of occupancy**.


If a structure will be flood proofed, the applicant shall provide a flood proofing certificate **within 7 calendar days** of completing the flood proofing.

A survey prepared by a professional land surveyor showing the location of the regulated flood plain, BFE, and the structure location with elevations **after completing**

Contact the Floodplain Administrator after completion of foundation for inspection.

Applicant acknowledgment: I the undersigned understand the	at the issuance of a floodplain development permit is
contingent upon the above information being correct and that	
provided as required. I also understand that prior to occupant	cy of the structure being permitted, an elevation and/or
flood proofing certificate signed by a professional engineer o	r professional land surveyor must be on file with the
Planning Department indicating the "as built" elevations (for	development within the regulated floodplain).
Applicant Signature:	Approved by:
Date: 06.21.12	Date:

April Helms

From: Sent: To: Subject: April Helms Tuesday, June 26, 2012 12:55 PM April Helms RE: FEMA update - Jacob's Ladder

From: Stewart, Shane A. [mailto:Shane.Stewart@rowancountync.gov]
Sent: Wednesday, May 02, 2012 10:54 AM
To: Kristin Knight-Meng
Subject: RE: FEMA Compliance for Jacob's Ladder Stream Restoration Site

Kristen

In order to approve this project, we would need the attached development permit completed and a statement certified by a PE that there would be no hydraulic impacts such as berms built or banks extended on the portion that is within the floodway. The project would restore the banks to the natural condition on these tributaries with no work within Irish Buffalo Creek. This should not entail a full no-impact certification or hydraulic model to certify as such.

Let me know if you have any questions regarding this.

Shane Stewart, CFM Senior Planner Rowan County Department of Planning & Development 402 N Main St. Suite 204, Salisbury, NC 28144 Main Line: (704) 216-8588 www.rowancountync.gov

From: Kristin Knight-Meng [mailto:Kristin.Knight-Meng@kci.com]
Sent: Monday, April 16, 2012 3:11 PM
To: Stewart, Shane A.
Subject: FEMA Compliance for Jacob's Ladder Stream Restoration Site

Dear Mr. Stewart,

I was given your name as the floodplain administrator for Rowan County and I left you a voice mail earlier today, but wanted to send you some information in the meantime.

I am currently working on a proposed stream restoration project in the southwestern part of the county. It is a project for the NC Ecosystem Enhancement Program and they have a certain form for FEMA compliance (see attached). We are not working directly on a modeled stream, but our tributaries do come down to the Irish Buffalo Creek floodplain. Can you take a look at the attached checklist and maps and give me a call at your convenience to discuss the project?

Thanks very much, Kristin

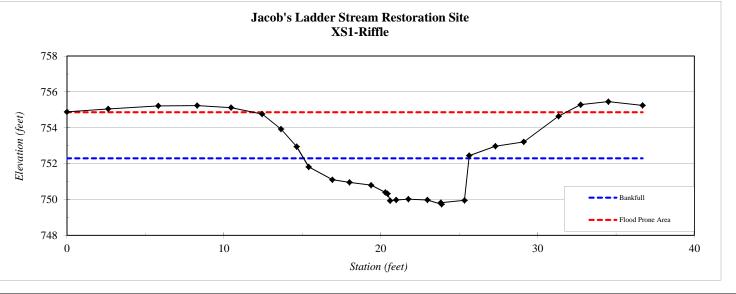
Kristin Knight-Meng Environmental Scientist KCI Technologies, Inc. (919) 923-2854 kristin.knight-meng@kci.com http://www.kci.com

1

Appendix C

Mitigation Work Plan Data and Analyses

Existing Conditions


Cross-Sections

River Basin:	Yadkin-PeeDee
Watershed:	Jacobs Ladder Site, Existing Conditions, T2-1
XS ID	XS1-Riffle
Drainage Area (sq mi):	0.67
Date:	2/9/2012
Field Crew:	A. French, A. Helms

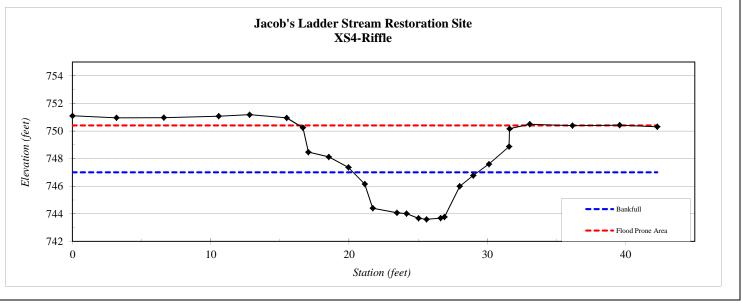
	Elevation
0.0	754.89
2.6	755.05
5.8	755.22
8.3	755.24
10.5	755.12
12.4	754.76
13.6	753.92
14.6	752.95
15.4	751.81
16.9	751.10
18.0	750.96
19.4	750.80
20.3	750.39
20.4	750.33
20.6	749.93
21.0	749.97
21.8	750.02
23.0	749.97
23.9	749.73
23.8	749.82
25.3	749.95
25.6	752.44
27.3	752.97
29.1	753.21
31.3	754.65
32.7	755.29
34.5	755.46
36.7	755.25

SUMMARY DATA	
Bankfull Elevation:	752.3
Bankfull Cross-Sectional Area:	18.5
Bankfull Width:	10.6
Flood Prone Area Elevation:	754.9
Flood Prone Width:	20
Max Depth at Bankfull:	2.6
Mean Depth at Bankfull:	1.7
W / D Ratio:	6.1
Entrenchment Ratio:	1.9
Bank Height Ratio:	2.0

River Basin:	Yadkin-PeeDee
Watershed:	Irish Buffalo Creek, Existing Conditions, T2-1
XS ID	XS2-Pool
Drainage Area (sq mi):	0.67
Date:	2/9/2012
Field Crew:	A. French, A. Helms

0.0 1.4 3.6 5.9 6.8	756.83 755.85 755.02 754.62
3.6 5.9 6.8	755.02
5.9 6.8	
6.8	754 62
	754.02
	754.26
7.2	753.65
7.6	749.61
8.5	749.72
9.8	749.74
10.4	749.78
11.0	749.94
11.7	750.07
13.5	750.28
15.9	750.65
17.6	750.74
19.4	750.34
21.5	751.34
24.2	751.81
27.6	752.52
30.0	753.20
33.4	753.61
36.5	753.60
39.6	753.66

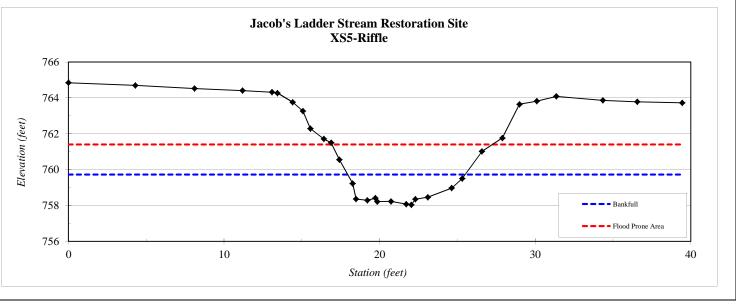
SUMMARY DATA	
Bankfull Elevation:	751.8
Bankfull Cross-Sectional Area:	20.6
Bankfull Width:	16.5
Flood Prone Area Elevation:	753.9
Flood Prone Width:	>35
Max Depth at Bankfull:	2.1
Mean Depth at Bankfull:	1.2
W / D Ratio:	13.2
Entrenchment Ratio:	2.1
Bank Height Ratio:	1.9



River Basin:	Yadkin-PeeDee
Watershed:	Irish Buffalo Creek, Existing Conditions, T2-2
XS ID	XS4-Riffle
Drainage Area (sq mi):	0.7
Date:	2/9/2012
Field Crew:	A. French, A. Helms

Station	Elevation
0.0	751.10
3.2	750.96
6.6	750.97
10.6	751.08
12.8	751.19
15.5	750.95
16.7	750.24
17.1	748.47
18.5	748.12
20.0	747.36
21.1	746.16
21.7	744.40
23.5	744.07
24.2	744.01
25.0	743.67
25.6	743.60
26.6	743.68
26.9	743.77
28.0	745.99
29.0	746.78
30.1	747.60
31.6	748.87
31.6	750.16
33.1	750.50
36.2	750.39
	750.42
39.6	

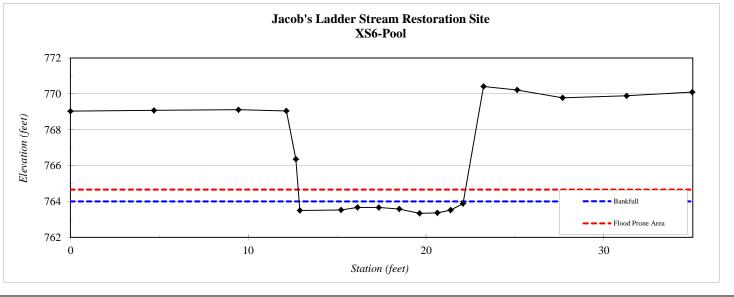
SUMMARY DATA	
Bankfull Elevation:	747.0
Bankfull Cross-Sectional Area:	25.0
Bankfull Width:	10.8
Flood Prone Area Elevation:	750.4
Flood Prone Width:	16
Max Depth at Bankfull:	3.4
Mean Depth at Bankfull:	2.3
W / D Ratio:	4.7
Entrenchment Ratio:	1.5
Bank Height Ratio:	2.0



River Basin:	Yadkin-PeeDee
Watershed:	Irish Buffalo Creek, Existing Conditions, T1-2
XS ID	XS5-Riffle
Drainage Area (sq mi):	0.36
Date:	2/10/2012
Field Crew:	A. French, A. Helms

Station	Elevation
0.0	764.85
4.3	764.70
8.1	764.52
11.2	764.41
13.1	764.32
13.4	764.27
14.4	763.76
15.1	763.27
15.6	762.29
16.4	761.71
16.9	761.50
17.4	760.55
18.3	759.23
18.5	758.36
19.2	758.29
19.7	758.41
19.9	758.22
20.7	758.23
21.7	758.07
22.0	758.03
22.3	758.35
23.1	758.46
24.6	758.97
25.3	759.50
26.6	761.01
27.9	761.76
29.0	763.64
30.1	763.82
31.4	764.09
34.3	763.86
36.6	763.78
39.5	763.73

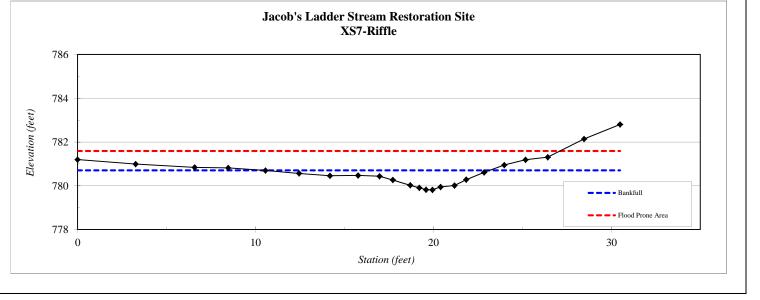
SUMMARY DATA	
Bankfull Elevation:	759.7
Bankfull Cross-Sectional Area:	10.2
Bankfull Width:	8.8
Flood Prone Area Elevation:	761.4
Flood Prone Width:	12
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	1.2
W / D Ratio:	7.6
Entrenchment Ratio:	1.3
Bank Height Ratio:	3.3



River Basin:	Yadkin-PeeDee
Watershed:	Irish Buffalo Creek, Existing Conditions, T1A-3
XS ID	XS6
Drainage Area (sq mi):	0.05
Date:	2/10/2012
Field Crew:	A. French, A. Helms

Station	Elevation
0.0	769.04
4.7	769.08
9.4	769.12
12.1	769.05
12.7	766.36
12.9	763.50
15.2	763.53
16.1	763.67
17.3	763.66
18.5	763.58
19.6	763.34
20.6	763.37
21.4	763.52
22.1	763.89
23.2	770.42
25.1	770.22
27.7	769.78
31.3	769.89
35.0	770.10

SUMMARY DATA			
Bankfull Elevation:	764.0		
Bankfull Cross-Sectional Area:	4.3		
Bankfull Width:	9.3		
Flood Prone Area Elevation:	764.7		
Flood Prone Width:	10		
Max Depth at Bankfull:	0.7		
Mean Depth at Bankfull:	0.5		
W / D Ratio:	20.1		
Entrenchment Ratio:	1.1		
Bank Height Ratio:	8.6		



River Basin:	Yadkin-PeeDee
Watershed:	Irish Buffalo Creek, Existing Conditions, T1A-2
XS ID	XS7-Riffle
Drainage Area (sq mi):	0.05
Date:	2/10/2012
Field Crew:	A. French, A. Helms

Station	Elevation
0.0	781.20
3.3	780.99
6.6	780.84
8.5	780.81
10.6	780.69
12.4	780.56
14.2	780.46
15.8	780.47
17.0	780.43
17.7	780.26
18.7	780.02
19.2	779.90
19.6	779.82
19.9	779.81
20.4	779.94
21.2	780.01
21.8	780.28
22.8	780.61
24.0	780.95
25.2	781.19
26.4	781.30
	782.14
28.5	782.80

SUMMARY DATA	
Bankfull Elevation:	780.7
Bankfull Cross-Sectional Area:	4.5
Bankfull Width:	12.7
Flood Prone Area Elevation:	781.6
Flood Prone Width:	>30
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.4
W / D Ratio:	35.8
Entrenchment Ratio:	2.4
Bank Height Ratio:	0.7

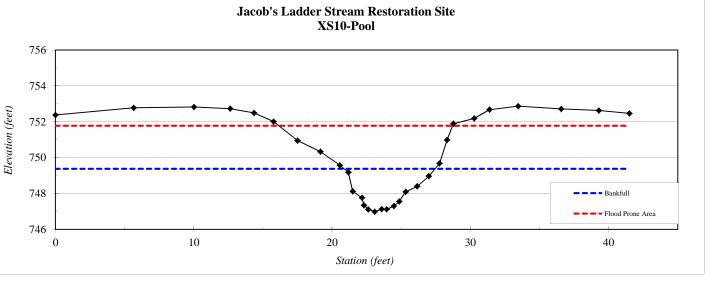
River Basin:	Yadkin-PeeDee
Watershed:	Irish Buffalo Creek, Existing Conditions, T1-2
XS ID	XS-9-Riffle
Drainage Area (sq mi):	0.36
Date:	2/10/2012
Field Crew:	A. French, A. Helms

Station	Elevation
0.0	760.03
4.4	760.12
7.7	760.38
11.8	760.50
14.4	760.57
16.7	760.17
18.4	759.84
19.2	757.97
20.7	756.70
21.4	756.14
21.8	755.94
22.3	755.76
22.7	755.48
23.1	755.48
23.8	755.47
24.6	755.45
25.3	755.37
25.9	755.47
26.4	755.68
27.0	755.87
28.0	756.51
28.6	756.86
29.2	756.99
30.8	757.36
33.0	757.87
36.1	758.11
39.1	758.25
40.3	758.79
42.2	760.46

SUMMARY DATA	
Bankfull Elevation:	757.1
Bankfull Cross-Sectional Area:	10.5
Bankfull Width:	9.6
Flood Prone Area Elevation:	758.9
Flood Prone Width:	16
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	1.1
W / D Ratio:	8.8
Entrenchment Ratio:	1.7
Bank Height Ratio:	2.9

River Basin:		Yadkin-PeeDee
Watershed:		Irish Buffalo Creek, Existing Conditions, T1-2
XS ID		XS10-Pool
Drainage Ar	ea (sq mi):	0.36
Date:		2/10/2012
Field Crew:		A. French, A. Helms
Station	Elevation	SUMMARY DATA
0.0	752.38	Bankfull Elevation:
5.7	752.78	Bankfull Cross-Sectional Area:
10.0	752.83	Bankfull Width:
12.6	752.73	Flood Prone Area Elevation:
14.4	752.49	Flood Prone Width:
15.8	752.01	Max Depth at Bankfull:
17.5	750.95	Mean Depth at Bankfull:
19.2	750.33	W / D Ratio:
20.6	749.58	Entrenchment Ratio:
21.2	749.18	Bank Height Ratio:
21.5	748.12	
22.2	747.76	
22.3	747.34	
22.6	747.11	
23.1	746.98	
23.6	747.12	
24.0	747.12	756
24.5	747.30	
24.9	747.55	754
25.3	748.09	
26.2	748.40	$\widehat{\mathbf{x}}$
27.0	748.96	Elevation (feet)
27.8	749.68) uc
28.3	750.98	
28.8	751.89	750
30.3	752.18	Ē
31.4	752.68	748
33.5	752.87	/40
24.4		

36.6 39.3


41.5

752.72

752.63

752.47

749.4 9.8 6.7 751.8 15 2.4 1.5 4.6 2.2 2.3

Existing Conditions

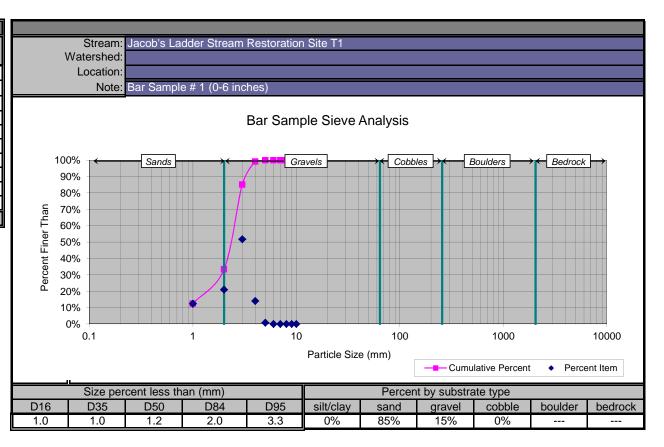
Sediment Data

<u>Pebble Count Plots</u>

Cross-Section 1						
Particle	Millimeter		Count		Particle Size Distribution Jacob's Ladder Stream RestorationSite	
Silt/Clay	< 0.062	S/C			(XS1) T2-1	
Very Fine	.062125	S	4			
Fine	.12525	А	2			
Medium	.2550	Ν		100		
Coarse	.50 - 1	D		100		
Very Coarse	1 - 2	S	10	(e)	,	
Very Fine	2 - 4		35	% Finer Than (Cumulative) 00 00 00		
Fine	4 - 5.7	G	21			
Fine	5.7 - 8	R	16	<u></u> ਹ <u></u> 60		
Medium	8 - 11.3	А	11	han		^31
Medium	11.3 - 16	V	1	F 40		
Coarse	16 - 22.6	Е		ine		
Coarse	22.6 - 32	L		2 0	бо	
Very Coarse	32 - 45	S				
Very Coarse	45 - 64	-		0		
Small	64 - 90	C			0.01 0.1 1 10 100 1000	
Small	90 - 128	0			Particle Size - Millimeters	
Large	128 - 180	В			Falticle Size - Millineters	
Large	180 - 256	L				
Small	256 - 362	В		D1	Size (mm) Size Distribution Type 2 mean 2.8 silt/size 00)/
Small Medium	362 - 512 512 - 1024	L D		D16 D35	2 mean 3.8 silt/clay 09 2.9 dispersion 1.9 sand 16	
		R		D35 D50		
Bedrock	>2048	BDRK		D30	3.9 skewness -0.01 gravel 84 5.2 cobble 09	
Dedrock	~2040	Total	100	D6. D84	7.4 boulder 09	
Note:		Total	100	D82 D95	9.8 bedrock 09	
NOLE.				109.	hardpan 09	
					wood/det 09	
					artificial 09	

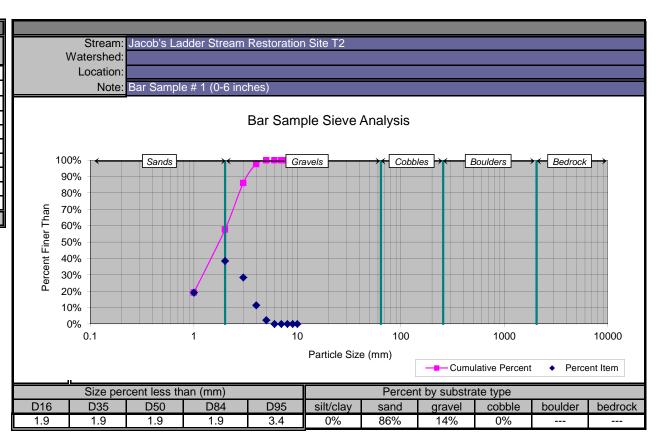
	Cross-Sect	tion 4										
Particle	Millimeter		Count			la	Particle Size					
Silt/Clay	< 0.062	S/C	12) T2-2				
Very Fine	.062125	S	2									
Fine	.12525	А										
Medium	.2550	Ν	5	100%								
Coarse	.50 - 1	D	18	100 %			*					
Very Coarse	1 - 2	S	9	(e)			a de la companya de la					
Very Fine	2 - 4		13	%08								
Fine	4 - 5.7	G	1									
Fine	5.7 - 8	R	13	<u>ບ</u> 60%								VC4
Medium	8 - 11.3	А	5	han								724
Medium	11.3 - 16	V	4	F 40%								
Coarse	16 - 22.6	E	6	Line								
Coarse	22.6 - 32	L	3	× 20%								
Very Coarse Very Coarse	32 - 45 45 - 64	S	<u>6</u> 1		• • •							
Small	43 - 04 64 - 90	С	1	0%								
Small	90 - 128	0	1	0.01	0.1	1	10	100	1000	10000)	
Large	128 - 180	B	1			Part	icle Size - Millime	ters				
Large	180 - 256	L										
Small	256 - 362	В		Size	(mm)		Size Distribu	tion		Тур	e	
Small	362 - 512	L		D16	0.32		mean	2.3	-	silt/clay	12%	
Medium	512 - 1024	D		D35	0.91		dispersion	7.3	-	sand	34%	
Lrg- Very Lrg	1024 - 2048	R		D50	2.4		skewness -	0.01		gravel	53%	
Bedrock	>2048	BDRK		D65	6.6					cobble	1%	
		Total	99	D84	17					boulder	0%	
Note:				D95	38					bedrock	0%	
										hardpan	0%	
										wood/det	0%	
										artificial	0%	

	Cross-Sec	tion 5				
Particle	Millimeter		Count		Particle Size Distribution Jacob's Ladder Stream RestorationSite	
Silt/Clay	< 0.062	S/C			(XS5) T1-2	
Very Fine	.062125	S				
Fine	.12525	А		Г		
Medium	.2550	Ν	9	100% -		
Coarse	.50 - 1	D				
Very Coarse	1 - 2	S	12	. 80% –	<u> </u>	
Very Fine	2 - 4		14	- 80% - 80% - 60\% - 60\%	★	
Fine	4 - 5.7	G	16	ן <u>1</u> האר		
Fine	5.7 - 8	R	6	<u> </u>		VSE
Medium	8 - 11.3	А	20	han		A35
Medium	11.3 - 16	V	10	ੇ ਸਿੱ 40% –		
Coarse	16 - 22.6	E	11	Line		
Coarse	22.6 - 32 32 - 45	L S	2	% 20% –	<u> </u>	
Very Coarse Very Coarse	32 - 45 45 - 64	3	1			
Small	64 - 90	С	· ·	0% –		
Small	90 - 128	Ö		0.0	0.01 0.1 1 10 100 1000 10000	
Large	128 - 180	B			Particle Size - Millimeters	
Large	180 - 256	L				
Small	256 - 362	В		S	Size (mm) Size Distribution Type	
Small	362 - 512	L		D16	1.5 mean 4.9 silt/clay 0%	
Medium	512 - 1024	D		D35	4.1 dispersion 3.3 sand 20%	
Lrg- Very Lrg				D50	6.1 skewness -0.09 gravel 80%	
Bedrock	>2048	BDRK		D65	9.4 cobble 0%	
		Total	103	D84	16 boulder 0%	
Note:				D95	22 bedrock 0%	
					hardpan 0%	
					wood/det 0%	
					artificial 0%	

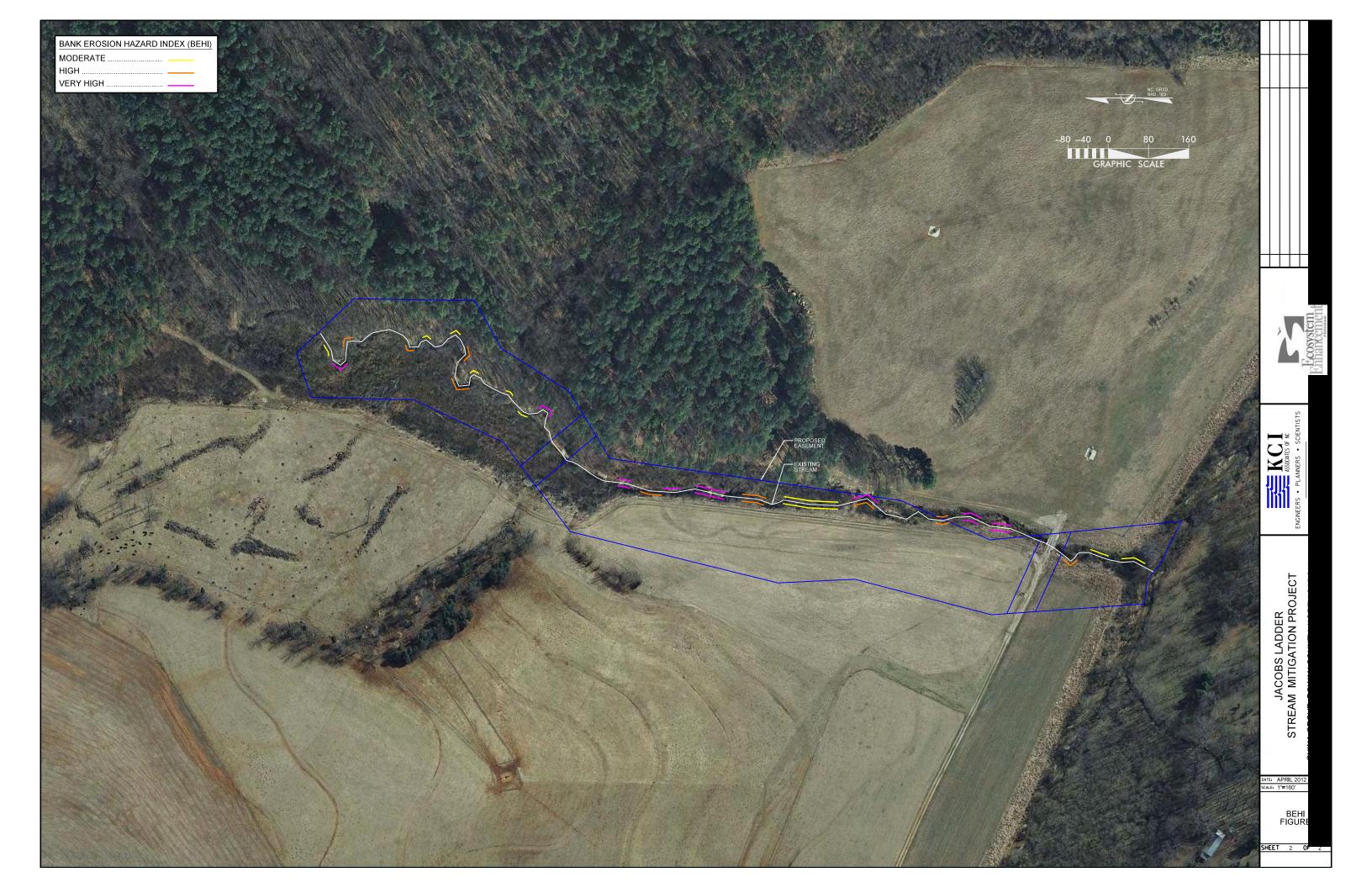

	Cross-Sec	tion 7											
Particle	Millimeter		Count				le	Particle S acob's Ladder S	ize Distributio				
Silt/Clay	< 0.062	S/C	88				56		67) T1A-2				
Very Fine	.062125	S	12										
Fine	.12525	А			_								
Medium	.2550	Ν			100%								
Coarse	.50 - 1	D					• • •						
Very Coarse	1 - 2	S		(e)	000/	*							
Very Fine	2 - 4			% Finer Than (Cumulative)	80% +								
Fine	4 - 5.7	G											
Fine	5.7 - 8	R		Ū	60% +							;	V97
Medium	8 - 11.3	А		han									~37
Medium	11.3 - 16	V			40% +								
Coarse	16 - 22.6	E		Line									
Coarse	22.6 - 32 32 - 45	L S		~ ~	20% -								
Very Coarse Very Coarse	32 - 45 45 - 64	3		1									
Small	64 - 90	С		1	0%	1			1				
Small	90 - 128	Ö		1	0.0	1 0.1	1	10	100	1000	10000		
Large	128 - 180	В		1			Part	ticle Size - Millir	neters				
Large	180 - 256	L		1									
Small	256 - 362	В			S	ize (mm)		Size Distri	bution		Туре	e	
Small	362 - 512	L]	D16	0.062		mean	0.1		silt/clay	88%	
Medium	512 - 1024	D			D35	0.062		dispersion	1.0		sand	12%	
Lrg- Very Lrg		R		-	D50	0.062		skewness	-		gravel	0%	
Bedrock	>2048	BDRK		-	D65	0.062					cobble	0%	
		Total	100		D84	0.062					boulder	0%	
Note:]	D95	0.093				_	bedrock	0%	
										_	hardpan	0%	
										-	wood/det	0%	
											artificial	0%	

	Cross-Sect	tion 9						
Particle	Millimeter		Count		la	Particle Size Distribu acob's Ladder Stream Rest		
Silt/Clay	< 0.062	S/C				(XS9) T1-2	orationolic	
Very Fine	.062125	S						
Fine	.12525	А						
Medium	.2550	Ν	7	100%				
Coarse	.50 - 1	D	4	100 //		A A A		
Very Coarse	1 - 2	S	21	(e)		*		
Very Fine	2 - 4		15	% Finer Than (Cumulative) %09 %00 %00 %00		<u>*</u> *		
Fine	4 - 5.7	G	7	E I		ţ.		
Fine	5.7 - 8	R	17	ບິ 60%				
Medium	8 - 11.3	А	7	han		-		
Medium	11.3 - 16	V	3	F 40%				
Coarse	16 - 22.6	E	9	ine l	1	•		
Coarse	22.6 - 32	L	6	≈ _{20%}	/			
Very Coarse	32 - 45	S	2 3		•			
Very Coarse	45 - 64		3	0%				
Small Small	64 - 90 90 - 128	C O		0.01	0.1 1	10 100	1000 10	000
Large	90 - 128 128 - 180	В			Part	icle Size - Millimeters		
Large	180 - 256	L			i dit			
Small	256 - 362	B		Size (mm)		Size Distribution	Т	ype
Small	362 - 512	I		· _ /	.2	mean 4.6	silt/cla	*1
Medium	512 - 1024	D			2.3	dispersion 3.9	san	/
Lrg- Very Lrg	1024 - 2048	R			1.9	skewness -0.02	grave	
Bedrock	>2048	BDRK		D65	7.3		cobbl	
		Total	101	D84	18		boulde	r 0%
Note:					32		bedrocl	
							hardpar	n 0%
							wood/de	et 0%
							artificia	l 0%

	Cross-Sect	ion 10				
Particle	Millimeter		Count		Particle Size Distribution Jacob's Ladder Stream RestorationSite	
Silt/Clay	< 0.062	S/C			(XS10) T1-2	
Very Fine	.062125	S				
Fine	.12525	А		_		
Medium	.2550	Ν	7	100% -		
Coarse	.50 - 1	D	4	100 %		
Very Coarse	1 - 2	S	21	(e)		
Very Fine	2 - 4		15	 - 80% 	•	
Fine	4 - 5.7	G	7	<u> </u>		
Fine	5.7 - 8	R	17	<u>ට</u> 60% -		V010
Medium	8 - 11.3	А	7	Jan		XS10
Medium	11.3 - 16	V	3	E 40%		
Coarse	16 - 22.6	E	9	ine		
Coarse	22.6 - 32	L	6	× 20% -		
Very Coarse	32 - 45	S	2			
Very Coarse	45 - 64		3	0% -		
Small Small	64 - 90 90 - 128	C O			0.01 0.1 1 10 100 1000 10000	
Large	90 - 128 128 - 180	В			Particle Size - Millimeters	
Large	120 - 160 180 - 256	L			Faiticle Size - Minimeters	
Small	256 - 362	B			Size (mm) Size Distribution Type	
Small	362 - 512	I		D16	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-
Medium	512 - 1024	D		D35	8dispersion12.0sand21%	-
Lrg- Very Lrg		R		D50	10 skewness -0.43 gravel 79%	-
Bedrock	>2048	BDRK		D65	13 cobble 0%	-
		Total	101	D84	18 boulder 0%	
Note:				D95	22 bedrock 0%	
					hardpan 0%	
					wood/det 0%	
					artificial 0%	


			F	Point / S	Side BA	R-BUI	_K MAT	ERIAL	S SAM	IPLE D	ATA: S	Size Di	stributio	on Anal	ysis	Pa	rty: AF,	AH			
S U			Locatio	on: Jaco	b's Lad	der T1						[Date: 2-	22-2012	2 N	Notes: E	Bar sam	ole 0-6 i	inches		
В		(\bigcirc	⇒⊂	$\supset \Leftarrow$	⇒⊂	\bigcirc	⇒<	$\supset =$	⇒⊂	$\supset =$	=>($\supset \Leftarrow$	⇒($\supset \Leftarrow$	⇒⊂	$\supset \Leftarrow$	⇒⊂		⇒⊂	$) \iff$
s	Sieve S	ize (mm)	Sieve S	ize (mm)	Sieve Si	ize (mm)	Sieve S	ze (mm)	Sieve S	ize (mm)	Sieve S	ize (mm)	Sieve S	ize (mm)	Sieve Siz	70 (mm)	Sieve Si	ze (mm)	Sieve Si	70 (mm)	
A M		1.0		.0		.0		.0		.0		6.0		1.5	128			20 (IIIII) 6.0	> 25	· ,	
P		eight (oz)	Tare We	· ·		eight (oz)	Tare We	·	-	eight (oz)		eight (oz)		eight (oz)	Tare We		Tare We		Tare We		SURFACE
L E		30		31		3		.5		7		18		3 (4)		<u> </u>		5 (*)		5 (4)	MATERIALS DATA
S	Sample	Weights	Sample	Weights	Sample \	Veights	Sample	Veights	Sample	Weights	Sample	Weights	Sample	Weights	Sample V	Veights	Sample \	Veights	Sample V	Veights	(Two Largest Particles)
	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	
1	91.0	61.0	134.0	103.0	297.0	254.0	114.0	69.0	51.0	4.0											No. Dia. WT.
2																					1 15mm .5 oz
3																					2 15mm .5 oz
4 5																					Bucket + Materials
6																					Weight
7																					Bucket Tare
8																					Weight
9																					Materials
10																					Weight (Materials less than:
11																					mm.)
12																					
13																					Be Sure to Add
14																					Weights to Grand
15	t Total	61.0		102.0		254.0		60.0		4.0		0.0		0.0		0.0		0.0		0.0	491.0
	t. Total and Tot.	61.0 12.4%		103.0 21.0%		254.0 51.7%		69.0 14.1%		4.0 0.8%		0.0		0.0 0.0%		0.0 0.0%		0.0		0.0	491.0
	n. % =<	12.4%	\rightarrow	33.4%	\longrightarrow	85.1%	\longrightarrow	99.2%	>	100.0%	\rightarrow	100.0%	\longrightarrow	100.0%		100.0%		100.0%		100.0%	GRAND TOTAL
loodii		.2.170		00.170		001170		001270	<u>.</u>	1001070		1001070		1001070		1001070		1001070		1001070	SAMPLE WEIGHT
			NOTES																		
															1 1						
												-									

Bar Sample Sie	ve Analy	/sis	
Smallest Sieve	Weight		Percent
Passed (mm)	(oz)	% Item	Finer Than
<1	61	12.4%	12.4%
1.0	103.0	21.0%	33.4%
2.0	254.0	51.7%	85.1%
4.0	69.0	14.1%	99.2%
8.0	4.0	0.8%	100.0%
16.0	0.0	0.0%	100.0%
31.5	0.0	0.0%	100.0%
128.0	0.0	0.0%	100.0%
256.0	0.0	0.0%	100.0%
> 256.0	0.0	0.0%	100.0%
Total:	491.0	100%	


			F	Point / S	Side BA	R-BUI		ERIAL	S SAM	PLE D	ATA: S	Size Di	stributio	on Anal	ysis	Pa	rty: AF,	AH			
S U			Locatio	on: Jaco	b's Lad	der T2						[Date: 2-2	22-2012	2	Notes: E	Bar sam	ole 0-6 i	inches		
В		(\bigcirc	⇒($) \Leftarrow$	⇒<		⇒>($) \Leftarrow$	⇒<		⇒($) \Leftarrow$	⇒($) \Leftarrow$	⇒<	$) \Leftarrow$	⇒($\bigcirc \blacksquare$	⇒<	$) \Leftrightarrow $
s	Ciava Ci		Ciava C	ize (mm)	Ciava Ci		Sieve S		Ciava Ci		Ciava C	ize (mm)	Sieve Si		Ciava Ci	ize (mm)	Ciava Ci		Sieve Si		
A	Sieve Si	, ,		.0		.0		2e (mm) .0		2e (mm) .0		6.0		.5		8.0	Sieve Si		Sieve Si.		
M P	<pre>< Tare We</pre>			.u eight (oz)		-	4 Tare We		-	ight (oz)		eight (oz)	-	-		eight (oz)	-		Tare We		SURFACE
L	ale we	• • •		31		3		5	4	• • •		8				signi (02)	Tale we	igni (oz)	Tale we	igni (02)	MATERIALS
E S	Sample V		Sample		Sample \		Sample		Sample \		Sample		Sample \	Neights	Sample \	Neights	Sample V	Veiahts	Sample V	Veiahts	DATA (Two Largest Particles)
	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	Total	Net	(Two Largest Particles)
1	152.0	122.0	92.0	61.0	88.0	45.0	71.0	26.0	62.0	15.0											No. Dia. WT.
2			89.0	58.0	89.0	46.0	61.0	16.0													1 23mm 1oz
3			108.0	77.0	98.0	55.0	76.0	31.0													2 22mm 1oz
4			80.0	49.0	78.0	35.0															Bucket
5																					+ Materials Weight
6																					Bucket
7																					Tare
8																					Weight
9																					Materials
10																					Weight (Materials less than:
11																					mm.)
12																					
13																					Be Sure to Add
14																					Weights to Grand
15		100.0		0.45.0		404.0		70.0		45.0						0.0		0.0		0.0	Total
	t. Total and Tot.	122.0 19.2%		245.0 38.5%		181.0 28.5%		73.0 11.5%		15.0 2.4%		0.0 0.0%		0.0 0.0%		0.0 0.0%		0.0		0.0	636.0
	and Tot. 1. % =<	19.2%		38.5% 57.7%	\longrightarrow	28.5% 86.2%		97.6%		2.4%		100.0%		100.0%		100.0%		0.0%		100.0%	GRAND TOTAL
Accun	1. /0 =<	19.2 /0		51.1 /6		00.2 /0		97.076		100.0 %		100.0 %		100.0 %		100.0 %][100.0 %	> [100.078	SAMPLE WEIGHT
			NOTES																		
												<u> </u>									

Bar Sample Sie	ve Analy	/sis	
Smallest Sieve	Weight		Percent
Passed (mm)	(oz)	% Item	Finer Than
<1	122	19.2%	19.2%
1.0	245.0	38.5%	57.7%
2.0	181.0	28.5%	86.2%
4.0	73.0	11.5%	97.6%
8.0	15.0	2.4%	100.0%
16.0	0.0	0.0%	100.0%
31.5	0.0	0.0%	100.0%
128.0	0.0	0.0%	100.0%
256.0	0.0	0.0%	100.0%
> 256.0	0.0	0.0%	100.0%
Total:	636.0	100%	

BEHI

						Moderat	te Rating					
	Bank Height (ft):		Bank	Height/	Root	Depth/	R	oot	Bank	Angle	Sur	face
	Bankfull Height (ft):		Ban	kfull Ht	Bank	Height	Den	sity %	(Deg	rees)	Prote	ction%
ľ		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V :	l:	V :	l:	V :	l:	V:	l:	V: 85.0	l: 1
ľ		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
a		Choice	V:	l:	V:	l:	V :	l:	V: 40.0	l: 2.9	V:	I:
eu		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
Potential	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V: 1.2	l: 4.0	V: 0.50	l: 3.9	V: 45.0	l: 4.7	V:	l:	V:	I:
sic		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
2	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
¥		Choice	۷:	l:	۷:	l:	V:	l:	V:	l:	V :	I:
Bank Erosion		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
-	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V :	l:	V:	l:	V:	I:
		Value Range	>	>2.8	<0	.05		<5	>1	19	<	10
	EXTREME	Index Range		10	1	10		10	1	0	1	0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
	Bedrock (Bedrock ba	onko hovo vonulow	bank erosi	on potential)								
	Beurock (Benock of Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adj	mposed of boulders points. If sand/grav ints depending perc)	s have low l vel matrix g	bank erosion reater than 5	0% of bank			djust)	BANK	MATERIA	LADJUST	IENT
trat	Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed	s have low I vel matrix g centage of I	bank erosion reater than 5 bank materia	0% of bank I that is corr	nposed of sa		djust)			L ADJUSTI	_
trat	Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju tification Comments: Few stratified layers of tification	mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed	s have low I vel matrix g centage of I	bank erosion reater than 5 bank materia	0% of bank I that is corr tion to bank	nposed of sa	nd)	djust) VERY HIGH	STRA			_
trat	Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju tification Comments: Few stratified layers of tification Add 5-10 points depe	mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed ending on position c	s have low I vel matrix g centage of I	bank erosion reater than 5 bank materia layers in rela	0% of bank I that is corr tion to bank	nposed of sa	nd)		STRA	TIFICATIO		_

			1		·	riigii	Rating				·	
	Bank Height (ft):			Height/	Root D	•		oot	Bank	Angle	Sur	
	Bankfull Height (ft):		Banl	cfull Ht	Bank	Height	Dens	sity %	(Deg	rees)	Protec	ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	l:
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
_	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
Potential		Choice	V:	l:	V:	l:	V:	l:	V: 45.0	l: 3.2	V: 70.0	l: 2
Ð		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
5	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V:	l:	V: 0.37	l: 5.2	V:	l:	V:	l:	V:	1:
SI		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
Erosion	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
bank		Choice	V: 1.6	l: 6.0	V:	l:	V: 29.0	l: 6.0	V:	l:	V:	l:
Dal		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
		Value Range	>	2.8	<0	.05		<5	>1	19	<	10
	EXTREME	Index Range	Γ					10	4			~
		maoxintango		10	1	0	-	10	1	0	1	0
	V = value, I = index Material Descriptio Mostly smaller grave Materials	Choice	V:	10 I:	1 V:	l:	V:	I: (Sum one	V:	I: om each	V:	I: 23.1
Ink	 Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) 	Choice Choice Choice I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	V: bank erosi s have low t rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank	I: SUB	V: -TOTAL	I: (Sum one	V:	I: om each	v: column)	l:
Int	 Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock b: Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adj 	Choice Choice	V: bank erosi s have low t rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank	I: SUB	V: -TOTAL	I: (Sum one	v: index fr	I: om each Ban	v: column)	I: 23.1
nk at	A Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments Few stratified layers to iffication	Choice Choice	V: bank erosi s have low b rel matrix g centage of b	I: on potential) pank erosion reater than 5 pank materia	V: potential) 0% of bank I that is com	I: SUB material, the posed of sa	V: -TOTAL	I: (Sum one	v: index fr	I: om each Ban	v: column) k Sketch	I: 23.1
rat	 Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock b: Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments Few stratified layers 	Choice Choice	V: bank erosi s have low b rel matrix g centage of b	I: on potential) pank erosion reater than 5 pank materia	V: potential) 0% of bank I that is com	I: SUB material, the posed of sa	V: -TOTAL	I: (Sum one	V: index fr	I: om each Ban	v: column) k Sketch	
rat	A Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments Few stratified layers to iffication	Choice Choice	V: bank erosi s have low b rel matrix g centage of b	I: on potential) pank erosion reater than 5 pank materia	V: potential) 0% of bank I that is com tion to bank	I: SUB material, the posed of sa	V: -TOTAL	I: (Sum one	V: index fr	I: om each Ban	V: column) k Sketch	
ank	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments Few stratified layers ification Add 5-10 points depe	Choice Ch	V: bank erosi s have low b rel matrix g centage of b	I: on potential) pank erosion reater than 5 pank materia	V: potential) 0% of bank I that is com tion to bank	I: SUB material, the posed of sa full stage	V: -TOTAL	l: (Sum one	V: index fr		V: column) k Sketch	

	Developing to the terminate of terminate o		Daula	11	Dest		h Rating	4	Daul	A	0	
	Bank Height (ft):			Height/ kfull Ht		Depth/		oot	Bank	-		face ction%
	Bankfull Height (ft):	Malua Danas				Height		sity %		rees)		
	VERY LOW	Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERTLOW	Index Range Choice	1.0 V:	1.9	1.0 V:	1.9 I:	1.0 V:	1.9	1.0 V:	1.9	1.0 V:	1.9
				l:				l:		l:		l:
	LOW	Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
a	LOW	Index Range Choice	2.0 V:	3.9 I:	2.0 V:	3.9 I:	2.0 V:	3.9 I:	2.0 V: 50.0	3.9 I: 3.4	2.0 V: 70.0	3.9 I: 3.
11U		Value Range	v. 1.2	1.5	v. 0.5	0.30	v . 54	1. 30	61.0	80.0	54	30
Potential	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
r L	MODERATE	Choice	4.0 V:	5.9 I:	4.0 V:	5.9 I:	4.0 V:	5.9 I:	4.0 V:	5.9 I:	4.0 V:	5.9 I:
Erosion	HIGH	Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
Ū	пібп	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9 I:	6.0	7.9
Bank		Choice	V: 2.0		V: 0.25	l: 6.5	V: 15.0	l: 7.9	V:		V:	l:
ñ	VERY HIGH	Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
	VERTHIGH	Index Range Choice	8.0 V:	9.0	8.0 V:	9.0 I:	8.0 V:	9.0 I:	8.0 V:	9.0 I:	8.0 V:	9.0
			V.	l:				۱. <5				l:
								 	>1			10
	EXTREME	Value Range		×2.8		0.05						
	EXTREME	Index Range		10	·	10		10	1	0	1	0
	EXTREME V = value, I = index k Material Descriptio Mostly smaller grave k Materials	Index Range Choice n:				10 I:	V:		1 V :	0 I: om each	1 V:	
	V = value, I = index k Material Descriptio Mostly smaller grave	Index Range Choice I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	V: bank erosi s have low l rel matrix g	10 I: on potential) bank erosion reater than 5	V: V: potential) 0% of bank	10 I: SUB	V: -TOTAL	II I: (Sum one	I index fr	0 I: om each Ban	V: column)	0 I: 28.9
Inl	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments	Index Range Choice In: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending pero ustment)	V: bank erosi s have low l rel matrix g	10 I: on potential) bank erosion reater than 5	V: V: potential) 0% of bank	10 I: SUB	V: -TOTAL	II I: (Sum one	I index fr	0 I: om each Ban	v: column)	0 I: 28.9
rat	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments Few stratified layers	Index Range Choice In: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending pero ustment)	V: bank erosi s have low l rel matrix g	10 I: on potential) bank erosion reater than 5	V: V: potential) 0% of bank	10 I: SUB	V: -TOTAL	II I: (Sum one	I index fr	0 I: om each Ban	V: column)	0 I: 28.9
rat	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments	Index Range Choice In: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending pero ustment)	V: bank erosi s have low l rel matrix g	10 I: on potential) bank erosion reater than 5	V: V: potential) 0% of bank	10 I: SUB	V: -TOTAL	II I: (Sum one	I index fr	0 I: om each Ban	V: column)	0 I: 28.9
nl	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments Few stratified layers	Index Range Choice In: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending pero) ustment) : were observed	V: bank erosi s have low l rel matrix g centage of l	10 I: on potential) bank erosion reater than 5 bank materia	v: v: 0% of bank I that is con	I0 I: SUB	V: -TOTAL	II I: (Sum one	I INDEX FR	0 I: Om each Ban	V: column)	0 I: 28.9
anl	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments Few stratified layers tification Add 5-10 points dependent	Index Range Choice Choice I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed ending on position of	V: bank erosi s have low l rel matrix g centage of l	10 I: on potential) bank erosion reater than 5 bank materia	v: potential) 0% of bank I that is con	10 I: SUB material, the posed of sa	v: -TOTAL	IO I: (Sum one			V: column) k Sketch	0 I: 28.9
rat	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments Few stratified layers tification	Index Range Choice In: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending pero) ustment) : were observed	V: bank erosi s have low l rel matrix g centage of l	10 I: on potential) bank erosion reater than 5 bank materia	v: potential) 0% of bank I that is con	I0 I: SUB	v: -TOTAL	II I: (Sum one		0 I: Om each Ban	V: column) k Sketch	0 I: 28.9

-						Moderat	e Rating					
	Bank Height (ft): Bank Height/			Root Depth/		Root		Bank Angle		Surface		
	Bankfull Height (ft):		Bankfull Ht		Bank Height		Density %		(Degrees)		Protection%	
		Value Range 1.0 1.1		1.1	1.0 0.9		100 80		0.0 20.0		100 80	
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V: 95.0	l: 1
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
Lorenual		Choice	V:	l:	V:	l:	V:	l:	V: 40.0	l: 2.9	V:	l:
		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
2	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V: 1.3	l: 4.6	V: 0.41	l: 4.0	V: 45.0	l: 4.7	V:	l:	V :	l:
		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
alln		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
	VERY HIGH	Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
-		Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
		Value Range	>2.8		<0.05		<5		>119		<10	
	EXTREME	Index Range		10	10		10		10		10	
	V = value, I = index Material Descriptio Mostly smaller gravel		V:	l:	V:	I: SUB	V: -TOTAL	ाः (Sum one	V: index fro		v: column) k Sketch	l: 17.
nŀ	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	bank erosi have low l rel matrix g	on potential) pank erosion reater than 5	potential) 0% of bank	SUB	-TOTAL	(Sum one		om each	column)	
Ink	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi	n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	bank erosi have low l rel matrix g	on potential) pank erosion reater than 5	potential) 0% of bank	SUB	-TOTAL	(Sum one	index fro	om each <u>Ban</u>	column)	17.
ank rat	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed	bank erosi have low l rel matrix g centage of l	on potential) bank erosion reater than 5 bank materia	potential) 0% of bank I that is com	SUB material, the posed of sa	-TOTAL	(Sum one	BANK	om each Ban	column)	MENT
rat	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adj ification Comments Few stratified layers of ification Add 5-10 points dependent	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed ending on position c	bank erosi have low l rel matrix g centage of l	on potential) pank erosion reater than 5 pank materia layers in rela	potential) 0% of bank I that is com tion to bank	SUB material, the posed of sa full stage HIGH	en do not ac	(Sum one djust) VERY HIGH	BANK		L ADJUST	MENT
rat	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adj ification Comments Few stratified layers of ification Add 5-10 points depe	n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed ending on position c	bank erosi have low l rel matrix g centage of l	on potential) pank erosion reater than 5 pank materia	potential) 0% of bank I that is com tion to bank	SUB material, the posed of sa full stage	en do not ac	(Sum one	BANK		L ADJUST	MENT
rat	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adj ification Comments Few stratified layers of ification Add 5-10 points dependent	I mixed with sand I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed ending on position c LOW 10-19.9	bank erosi have low l rel matrix g centage of l	on potential) pank erosion reater than 5 pank materia layers in rela	potential) 0% of bank I that is com tion to bank	SUB material, the posed of sa full stage HIGH	en do not ac	(Sum one djust) VERY HIGH	BANK		column)	MENT

MO VE VE VE VE VE VE VE VE VE EX VE	Height (ft): III Height (ft): ERY LOW LOW ODERATE HIGH ERY HIGH EXTREME Iue, I = index rial Descriptio smaller gravel	Value Range Index Range Value Range Index Range Value Range Value Range Index Range Value Range Index Range Index Range Index Range Value Range Index Range Index Range Choice Value Range Index Range	Banl 1.0 1.0 V: 1.11 2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.6 2.1 8.0 V: >	Height/ 1.1 1.9 1.19 3.9 1: 1.5 5.9 1: 2.0 7.9 1: 6.0 2.8 9.0 1: -2.8 10 1:	1.0 1.0 V: 0.9 2.0 V: 0.5 4.0 V: 0.40 0.29 6.0 V: 0.14 8.0 V: <pre></pre>	Pepth/ Height 0.9 1.9 1.9 0.50 3.9 I: 0.30 5.9 I: 4.9 0.15 7.9 I: 0.05 9.0 I: 05 0	Ro Dens 100 1.0 V: 79 2.0 V: 54 4.0 V: 32.0 V: 32.0 V: 6.0 V: 14 8.0 V: V:	ity % 80 1.9 1. 55 3.9 1: 30 5.9 1: 5.9 1: 7.9 1: 5.7 15 7.9 1: 5.9 1: 5.9 1: 15 7.9 1: 1: 15 7.9 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	(Deg 0.0 1.0 V: 21.0 2.0 V: 45.0 61.0 4.0 V: 81.0 6.0 V: 91.0 8.0 V:	Angle rees) 20.0 1.9 1.9 60.0 3.9 1: 3.2 80.0 5.9 1: 90.0 7.9 1: 119.0 9.0 1: 19	Surf Protect 100 1.0 V: 80.0 V: 29 6.0 V: 29 6.0 V: 14 8.0 V:	tion% 80 1.9 1. 55 3.9 1: 30 5.9 1: 15 7.9 1: 15 7.9 1: 10 9.0 1:
VE MO VE VE VE VE EX V = valu Ank Materia Bedrocl Boulder Cobble Gravel (Sand (A	ERY LOW LOW ODERATE HIGH ERY HIGH EXTREME lue, 1 = index	Index Range Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Index Range Value Range Index Range Index Range Index Range Index Range Index Range Choice Value Range Index Range Choice Value Range Index Range Choice Value Range	1.0 1.0 V: 1.11 2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.6 8.0 V: 2.1 8.0 V: >	1.1 1.9 1.19 3.9 1: 1.5 5.9 1: 2.0 7.9 1: 6.0 2.8 9.0 1: 52.8 10	1.0 1.0 V: 0.9 2.0 V: 0.5 4.0 V: 0.40 0.29 6.0 V: 0.14 8.0 V: <pre><0</pre>	0.9 1.9 0.50 3.9 1: 0.30 5.9 1: 4.9 0.15 7.9 1: 0.05 9.0 1: 0.55	100 1.0 V: 79 2.0 V: 54 4.0 V: 32.0 29 6.0 V: 14 8.0 V:	80 1.9 1: 55 3.9 1: 30 5.9 1: 5.7 15 7.9 1: 5 9.0 1:	0.0 1.0 V: 21.0 2.0 V: 45.0 61.0 4.0 V: 81.0 6.0 V: 91.0 8.0 V:	20.0 1.9 1: 60.0 3.9 1: 3.2 80.0 5.9 1: 90.0 7.9 1: 119.0 9.0 1: 19	100 1.0 V: 80.0 79 2.0 V: 54 4.0 V: 29 6.0 V: 14 8.0 V:	80 1.9 1. 1 55 3.9 1: 30 5.9 1: 15 7.9 1: 10 9.0 1:
MO VEI V = valu V = valu Mostly s nnk Materia Bedrocl Boulder Cobble Gravel (Sand (A	LOW ODERATE HIGH ERY HIGH EXTREME lue, 1 = index	Index Range Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Index Range Value Range Index Range Index Range Index Range Index Range Index Range Choice Value Range Index Range Choice Value Range Index Range Choice Value Range	1.0 V: 1.11 2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.6 6.0 V: 1.6 8.0 V: V: 5	1.9 1.19 3.9 1: 1.5 5.9 1: 2.0 7.9 1: 6.0 2.8 9.0 1: 52.8 10	1.0 V: 0.9 2.0 V: 0.5 4.0 V: 0.40 0.29 6.0 V: 0.14 8.0 V: <0 1	1.9 1: 0.50 3.9 1: 0.30 5.9 1: 4.9 0.15 7.9 1: 0.05 9.0 1: 0.5	1.0 V: 79 2.0 V: 54 4.0 V: 32.0 29 6.0 V: 14 8.0 V: <	1.9 1: 55 3.9 1: 30 5.9 1: 5.7 15 7.9 1: 5 9.0 1:	1.0 V: 21.0 2.0 V: 45.0 61.0 4.0 V: 81.0 6.0 V: 91.0 8.0 V: V:	1.9 1: 60.0 3.9 1: 3.2 80.0 5.9 1: 90.0 7.9 1: 119.0 9.0 1: 19	1.0 V: 80.0 79 2.0 V: 54 4.0 V: 29 6.0 V: 14 8.0 V:	1.9 1: 1 55 3.9 1: 30 5.9 1: 15 7.9 1: 15 7.9 1: 10 9.0 1: 12 10
MO VEI V = valu V = valu Mostly s nnk Materia Bedrocl Boulder Cobble Gravel (Sand (A	LOW ODERATE HIGH ERY HIGH EXTREME lue, 1 = index	Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Index Range Value Range Index Range Index Range Index Range Index Range Choice Value Range Index Range Choice Value Range Index Range	V: 1.11 2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.6 8.0 V: 5 5 5 5 5 5 5 5 5 5 5 5 5	I: 1.19 3.9 I: 1.5 5.9 I: 2.0 7.9 I: 6.0 2.8 9.0 I:	V: 0.9 2.0 V: 0.5 4.0 V: 0.40 0.29 6.0 V: 0.14 8.0 V: <pre></pre>	I: 0.50 3.9 I: 0.30 5.9 I: 4.9 0.15 7.9 I: 0.05 9.0 I: 0.5	V: 79 2.0 V: 54 4.0 V: 32.0 29 6.0 V: 14 8.0 V: 	I: 55 3.9 I: 30 5.9 I: 5.7 15 7.9 I: 5 9.0 I: 15	V: 21.0 2.0 V: 45.0 61.0 4.0 V: 81.0 6.0 V: 91.0 8.0 V:	I: 60.0 3.9 3.2 80.0 5.9 I: 90.0 7.9 I: 119.0 9.0	V: 80.0 79 2.0 V: 54 4.0 V: 29 6.0 V: 14 8.0 V:	I: 1 55 3.9 I: 30 5.9 I: 15 7.9 I: 10 9.0 I:
VE V = valu V = valu Nk Materia Bedrocl Boulder Cobble Gravel (Sand (A	ODERATE HIGH ERY HIGH EXTREME lue, I = index	Value Range Index Range Value Range Index Range Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Choice	1.11 2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.6 6.0 V: 1.6 8.0 V: V: 5	1.19 3.9 1: 1.5 5.9 1: 2.0 7.9 1: 6.0 2.8 9.0 1: 	0.9 2.0 V: 0.5 4.0 V: 0.40 0.29 6.0 V: 0.14 8.0 V: <0 1	0.50 3.9 I: 0.30 5.9 I: 4.9 0.15 7.9 I: 0.05 9.0 I: 05	79 2.0 V: 54 4.0 V: 32.0 29 6.0 V: 14 8.0 V: 29 6.0 V: 29 6.0 V: 29 6.0 V: 29 6.0 V: 29 6.0 V: 29 6.0 V: 29 6.0 V: 29 6.0 V: 29 6.0 V: 29 6.0 V: 29 54 54 54 54 54 54 54 54 54 54 54 54 54	55 3.9 1: 30 5.9 1: 5.7 15 7.9 1: 5 9.0 1:	21.0 2.0 V: 45.0 61.0 4.0 V: 81.0 6.0 V: 91.0 8.0 V:	60.0 3.9 1: 3.2 80.0 5.9 1: 90.0 7.9 1: 119.0 9.0 1: 19	79 2.0 V: 54 4.0 V: 29 6.0 V: V: 14 8.0 V:	55 3.9 1: 30 5.9 1: 15 7.9 1: 10 9.0 1:
VE V = valu V = valu Nk Materia Bedrocl Boulder Cobble Gravel (Sand (A	ODERATE HIGH ERY HIGH EXTREME lue, I = index	Index Range Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Index Range Index Range Choice Value Range Index Range Choice Choice Value Range Index Range	2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.6 2.1 8.0 V: V: >	3.9 I: 1.5 5.9 I: 2.0 7.9 I: 6.0 2.8 9.0 I: 	2.0 V: 0.5 4.0 V: 0.40 0.29 6.0 V: 0.14 8.0 V: <0 1	3.9 I: 0.30 5.9 I: 4.9 0.15 7.9 I: 0.05 9.0 I: 0.05	2.0 V: 54 4.0 V: 32.0 29 6.0 V: 14 8.0 V: S.0 V: S.0 S.0 V: S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0	3.9 I: 30 5.9 I: 5.7 15 7.9 I: 5 9.0 I:	2.0 V: 45.0 61.0 4.0 V: 81.0 6.0 V: 91.0 8.0 V: V:	3.9 i: 3.2 80.0 5.9 i: 90.0 7.9 i: 119.0 9.0 i: 19	2.0 V: 54 4.0 V: 29 6.0 V: V: 14 8.0 V:	3.9 I: 30 5.9 I: 15 7.9 I: 10 9.0 I:
VE V = valu V = valu Nk Materia Bedrocl Boulder Cobble Gravel (Sand (A	ODERATE HIGH ERY HIGH EXTREME lue, I = index	Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Index Range Index Range Choice Value Range Index Range Choice Choice Value Range	V: 1.2 4.0 V: 1.6 6.0 V: 1.6 2.1 8.0 V: >	I: 1.5 5.9 1: 2.0 7.9 I: 6.0 2.8 9.0 I:	V: 0.5 4.0 V: 0.40 0.29 6.0 V: 0.14 8.0 V: <pre></pre>	I: 0.30 5.9 I: 4.9 0.15 7.9 I: 0.05 9.0 I: 0.05	V: 54 4.0 V: 32.0 29 6.0 V: 14 8.0 V: <	I: 30 5.9 I: 5.7 15 7.9 I: 5 9.0 I:	V: 45.0 61.0 4.0 V: 81.0 6.0 V: 91.0 8.0 V:	I: 3.2 80.0 5.9 I: 90.0 7.9 1 119.0 9.0 I: 119	V: 54 4.0 V: 29 6.0 V: V: 14 8.0 V:	I: 30 5.9 I: 15 7.9 I: 10 9.0 I:
VE EX V = valu V = valu Nk Materia Bedrocl Boulder Cobble Gravel (Sand (A	HIGH ERY HIGH XTREME lue, I = index ial Descriptio	Value Range Index Range Value Range Index Range Value Range Index Range Choice Value Range Index Range Index Range Choice	1.2 4.0 V: 1.6 6.0 V: 1.6 2.1 8.0 V: >	1.5 5.9 1: 2.0 7.9 1: 6.0 2.8 9.0 1: 	0.5 4.0 V: 0.40 0.29 6.0 V: 0.14 8.0 V: <0 1	0.30 5.9 0.15 7.9 1: 0.05 9.0 1: 0.05	54 4.0 29 6.0 V: 14 8.0 V: <	30 5.9 15 7.9 1: 5 9.0 1:	61.0 4.0 V: 81.0 6.0 V: 91.0 8.0 V:	80.0 5.9 I: 90.0 7.9 I: 119.0 9.0 I: 19	54 4.0 V: 29 6.0 V: 14 8.0 V:	30 5.9 1: 15 7.9 1: 10 9.0 1:
VE EX V = valu V = valu Nk Materia Bedrocl Boulder Cobble Gravel (Sand (A	HIGH ERY HIGH XTREME lue, I = index ial Descriptio	Index Range Choice Value Range Index Range Value Range Index Range Value Range Index Range Index Range Choice	4.0 V: 1.6 6.0 V: 1.6 2.1 8.0 V: V: >	5.9 I: 2.0 7.9 I: 6.0 2.8 9.0 I: -2.8 10	4.0 V: 0.40 0.29 6.0 V: 0.14 8.0 V: <0 1	5.9 1: 4.9 0.15 7.9 1: 0.05 9.0 1: 05	4.0 V: 32.0 29 6.0 V: 14 8.0 V: 	5.9 1: 5.7 15 7.9 1: 5 9.0 1:	4.0 V: 81.0 6.0 V: 91.0 8.0 V:	5.9 I: 90.0 7.9 I: 119.0 9.0 I: 19	4.0 V: 29 6.0 V: 14 8.0 V:	5.9 I: 15 7.9 I: 10 9.0 I:
VE V = valu V = valu Mostly s nk Materia Bedrocl Boulder Cobble Gravel (Sand (A	HIGH ERY HIGH XTREME lue, I = index ial Descriptio	Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Choice	V: <u>1.6</u> <u>6.0</u> V: <u>1.6</u> <u>2.1</u> <u>8.0</u> V: <u>></u>	I: 2.0 7.9 I: 6.0 2.8 9.0 I: •2.8 10 10	V: 0.40 0.29 6.0 V: 0.14 8.0 V: <0 1	I: 4.9 0.15 7.9 I: 0.05 9.0 I: 005	V: 32.0 29 6.0 V: 14 8.0 V: <	l: 5.7 15 7.9 l: 5 9.0 l:	V: 81.0 6.0 V: 91.0 8.0 V:	l: 90.0 7.9 I: 119.0 9.0 I: 19	V: 29 6.0 V: 14 8.0 V:	I: 15 7.9 I: 10 9.0 I:
VE EX V = valu Nk Materia Bedroct Boulder Cobble Gravel (Sand (A	ERY HIGH EXTREME lue, I = index rial Descriptio	Value Range Index Range Value Range Index Range Choice Value Range Index Range Choice	1.6 6.0 V: 1.6 2.1 8.0 V: >	2.0 7.9 1: 6.0 2.8 9.0 1: \$2.8 10	0.29 6.0 V: 0.14 8.0 V: <0 1	0.15 7.9 I: 0.05 9.0 I: 05	29 6.0 V: 14 8.0 V: <	15 7.9 I: 5 9.0 I:	81.0 6.0 V: 91.0 8.0 V:	90.0 7.9 I: 119.0 9.0 I: 19	29 6.0 V: 14 8.0 V:	15 7.9 I: 10 9.0 I:
VE V= valu Nostly s nk Materia Bedrocl Boulder Gravel (Sand (A	ERY HIGH EXTREME lue, I = index rial Descriptio	Index Range Choice Value Range Index Range Choice Value Range Index Range Choice	6.0 V: 1.6 2.1 8.0 V:	7.9 1: 6.0 2.8 9.0 1: -2.8 10	6.0 V: 0.14 8.0 V: <0 1	7.9 I: 0.05 9.0 I: 05	6.0 V: 14 8.0 V: <	7.9 I: <u>5</u> 9.0 I:	6.0 V: 91.0 8.0 V:	7.9 I: <u>119.0</u> <u>9.0</u> I: 19	6.0 V: 14 8.0 V:	7.9 I: 10 9.0 I:
VE VE V = valu Nk Materia Bedroci Boulder Cobble Gravel (Sand (A	ERY HIGH EXTREME lue, I = index rial Descriptio	Choice Value Range Index Range Choice Value Range Index Range Choice	V: 1.6 2.1 8.0 V:	I: 6.0 2.8 9.0 I: -2.8 10	V: 0.14 8.0 V: <0 1	l: 0.05 9.0 l: 05	V: 14 8.0 V: <	l: 5 9.0 I:	V: 91.0 8.0 V:	l: 119.0 9.0 I: 19	V: 14 8.0 V:	l: 10 9.0 l:
VE EX V = valu Nk Materia Bedroct Boulder Cobble Gravel (Sand (A	XTREME lue, I = index ial Descriptio	Value Range Index Range Choice Value Range Index Range Choice	2.1 8.0 V:	2.8 9.0 I: >2.8 10	0.14 8.0 V: <0	0.05 9.0 I: 05	14 8.0 V:	5 9.0 I:	91.0 8.0 V:	119.0 9.0 I: 19	14 8.0 V :	10 9.0 I:
VE EX V = valu Nk Materia Mostly s nk Materia Bedroct Boulder Cobble Gravel (Sand (A	XTREME lue, I = index ial Descriptio	Index Range Choice Value Range Index Range Choice	8.0 V:	9.0 I: >2.8 10	8.0 V: <0	9.0 I: 05	8.0 V:	9.0 I:	8.0 V :	9.0 I: 19	8.0 V :	9.0 I:
VE EX V = valu Nk Materia Mostly s nk Materia Bedroct Boulder Cobble Gravel (Sand (A	XTREME lue, I = index ial Descriptio	Choice Value Range Index Range Choice	V: >	l: >2.8 10	V: <0 1	l: .05	V: <	l:	V:	l: 19	V:	I:
V = valu nk Materia Mostly s nk Materia Bedroct Boulder Cobble Gravel (Sand (A	lue, I = index ial Descriptio	Value Range Index Range Choice	>	>2.8 10	<0 1	.05	<			19		
V = valu nk Materia Mostly s nk Materia Bedroct Boulder Cobble Gravel (Sand (A	lue, I = index ial Descriptio	Index Range Choice		10	1			5	>1		<1	0
V = valu nk Materia Mostly s nk Materia Bedroct Boulder Cobble Gravel (Sand (A	lue, I = index ial Descriptio	Choice				0						
nk Materia <u>Mostly s</u> nk Materia Bedrocl Boulder Cobble Gravel (Sand (A	ial Descriptio		V:	l:	V:		1	0	1	0	1	0
nk Materia Mostly s nk Materia Bedrocl Boulder Cobble Gravel (Sand (A	ial Descriptio	n:				I:	V:	l:	V:	l:	V:	I:
-	ers (Banks cor e (Subtract 10		s have low t vel matrix g	bank erosion reater than 5	potential) 60% of bank			just)				
									BAN	MATERIAL	_ ADJUSTN	IENT
Few stra	on Comments ratified layers											
Add 5-10		nding on position o	of unstable	layers in rela	ition to bank	ull stage			STRA	TIFICATION	N ADJUSTM	IENT
	ERY LOW	LOW		MODERATE	Ξ	HIGH	١	/ERY HIGH		EXTREME		
	5-9.9	10-19.9		20-29.9		30-39.9		40-45.9		46-50		

	Stream: Jaco	ob's Ladder (T1-2	2)		Reach:	305 Lin		Date:	2/21/12	Crew:	AH	
—							h Rating					_
	Bank Height (ft):			Height/	Root D	•	Ro			Angle	Surf	
ť	Bankfull Height (ft):			kfull Ht	Bank H	-		sity %		rees)		ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
:	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
200		Choice	V:	l:	V:	l:	V:	l:	V: 50.0	l: 3.4	V: 70.0	1:
		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
2	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	l:
ġ		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
		Choice	V:	l:	V: 0.20	l: 7.2	V: 15.0	l: 7.9	V:	l:	V:	l:
Ĭ		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V: 2.6	l: 8.7	V:	l:	V:	l:	V:	I:	V:	I:
ſ		Value Range	>	2.8	<0.	05	<	5	>1	19	<	10
	EVTREME											
	EXTREME	Index Range		10	10	0	1	0	1	0	1	0
		Index Range Choice	V:	10 I:	1) V:	l:	V:	l:	V:	l:	V:	I:
,	EXTREME V = value, I = index	·				l:		l:	V:	l:	V:	l:
		Choice				l:	V:	l:	V:	I: om each	V:	I:
nk	V = value, I = index	Choice n:				l:	V:	l:	V:	I: om each	v: column)	I:
nk	V = value, I = index Material Descriptio	Choice n:				l:	V:	l:	V:	I: om each	v: column)	I:
nk I	V = value, I = index Material Description Mostly smaller gravel	Choice n: I mixed with sand	V:	l:		l:	V:	l:	V:	I: om each	v: column)	I:
nk _ nk	V = value, I = index Material Description Mostly smaller gravel Materials	Choice n: I mixed with sand anks have very low	V: bank erosi	I: on potential)	V:	l:	V:	l:	V:	I: om each	v: column)	I:
nk nk	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba	Choice n: I mixed with sand anks have very low mposed of boulders	V: bank erosi	I: on potential) pank erosion	V:	I: SUB	v: -TOTAL (I: Sum one	V:	I: om each	v: column)	I:
nk 	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor	Choice n: I mixed with sand anks have very low mposed of boulders points. If sand/grav	V: bank erosi s have low l rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank r	I: SUB	• TOTAL (I: Sum one	V:	I: om each	v: column)	I:
nk nk 	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10	Choice n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc	V: bank erosi s have low l rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank r	I: SUB	• TOTAL (I: Sum one	V:	I: om each	v: column)	I:
nk 	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi	Choice n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	V: bank erosi s have low l rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank r	I: SUB	• TOTAL (I: Sum one	V:	I: om each	v: column)	l:
nk 	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	Choice n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	V: bank erosi s have low l rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank r	I: SUB	• TOTAL (I: Sum one	V: e index fr	I: om each Ban	v: column)	I: 30.
nk 	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	Choice n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	V: bank erosi s have low l rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank r	I: SUB	• TOTAL (I: Sum one	V: e index fr	I: om each Ban	v: column) k Sketch	I: 30.
nk 	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	Choice n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc ustment)	V: bank erosi s have low l rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank r	I: SUB	• TOTAL (I: Sum one	V: e index fr	I: om each Ban	v: column) k Sketch	I: 30.
nk nk	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju	Choice n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment)	V: bank erosi s have low l rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank r	I: SUB	• TOTAL (I: Sum one	V: e index fr	I: om each Ban	v: column) k Sketch	I: 30.
nk 	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju	Choice n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment)	V: bank erosi s have low l rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank r	I: SUB	• TOTAL (I: Sum one	V: e index fr	I: om each Ban	v: column) k Sketch	I: 30.
nk 	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju ification Comments: Few stratified layers of fication	Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choic	V: bank erosi s have low l rel matrix g centage of l	I: on potential) pank erosion reater than 5 pank materia	V: potential) 0% of bank r I that is comp	I: SUB	• TOTAL (I: Sum one	V: e index fr	I: om each Ban	v: column) k Sketch	I: 30.
nk 	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju ification Comments:	Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choic	V: bank erosi s have low l rel matrix g centage of l	I: on potential) pank erosion reater than 5 pank materia	V: potential) 0% of bank r I that is comp	I: SUB	• TOTAL (I: Sum one	V: index fr	I: om each Ban	V: column) k Sketch	1: 30.
nk 	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju ification Comments: Few stratified layers of fication	Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choic	V: bank erosi s have low l rel matrix g centage of l	I: on potential) pank erosion reater than 5 pank materia	V: potential) 0% of bank r I that is comp	I: SUB	• TOTAL (I: Sum one	V: index fr	I: om each Ban	v: column) k Sketch	1: 30.
nk nk i i i i i i i i i i i i i i i i i	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju ification Comments: Few stratified layers of fication	Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choice Choic	V: bank erosi s have low l rel matrix g centage of l	I: on potential) pank erosion reater than 5 pank materia	V: potential) 0% of bank r I that is comp tion to bankf	I: SUB	v: -TOTAL (en do not ad nd)	I: Sum one	V: e index fr BANI BANI	I: om each Ban	V: column) k Sketch	1: 30.4 MENT

GRAND TOTAL

BEHI RATING

42.4

Very High

Bank location description (check one)

The BEHI was conducted at several locations on T1-2 at representative bank features throughout.

_					1	Moderat	Ŭ					
	Bank Height (ft):		Bank	Height/	Root D	Depth/	Ro	oot	Bank	Angle	Sur	face
	Bankfull Height (ft):		Bank	full Ht	Bank I	Height	Dens	sity %	(Deg	rees)	Prote	ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V: 80.0	l: 1
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
Potential		Choice	V:	l:	V: 0.70	l: 2.9	V: 56.0	l: 3.8	V: 45.0	l: 3.2	V:	l:
E		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
5 L	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V: 1.4	l: 5.3	V:	l:	V :	l:	V:	I:	V:	I:
		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
4		Choice	V:	l:	V:	l:	V :	l:	V:	l:	V :	I:
Dalik		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
-	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	l:
		Value Range	>	2.8	<0.	.05		<5	>1	19	<	10
	EVTDEME							10		0		0
	EXTREME			10		0						
	V = value, I = index Material Descriptio Mostly smaller gravel		V:	10 I:	V:	0 I: SUB	V :	I: (Sum one	V :	I: om each	V:	l:
Ink	V = value, I = index x Material Descriptio	Choice I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	V: bank erosio have low b el matrix gr	I: on potential) bank erosion eater than 5	V: potential) i0% of bank (I: SUB	V: -TOTAL	I: (Sum one	V: e index fr	I: om each Ban	v: column)	I: 17.
ınk rat	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	Choice Choice	V: bank erosio have low b rel matrix gr centage of b	I: on potential) pank erosion eater than 5 pank materia	V: potential) i0% of bank i il that is com	I: SUB material, the posed of sa	V: -TOTAL	I: (Sum one	V: index fr	I: om each Ban	v: column) ik Sketch	I: 17.1
ınk rat	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adju ification Comments: stratified layers were ification	Choice Ch	V: bank erosid have low b el matrix gr centage of b	I: on potential) pank erosion eater than 5 pank materia	V: potential) i0% of bank i il that is com	I: SUB material, the posed of sa	v: -TOTAL (en do not ac	I: (Sum one	V: e index fr	I: om each Ban	V: column) k Sketch	I: 17.1
nk	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju ification Comments: stratified layers were ification Add 5-10 points depe	Choice Ch	V: bank erosid have low b el matrix gr centage of b	I: on potential) oank erosion eater than 5 oank materia ayers in rela	V: potential) i0% of bank i il that is com	I: SUB material, the posed of sa full stage	v: -TOTAL (en do not ac	l: (Sum one	V: e index fr		V: column) k Sketch	I: 17.

						Ŭ	Rating				-	
	Bank Height (ft):			Height/	Root I	•		oot	Bank	Angle		face
ł	Bankfull Height (ft):		Bank	tfull Ht	Bank	Height	Dens	sity %		rees)	Prote	ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V: 70.0	l: 1
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
		Choice	V:	l:	V: 0.71	l: 2.9	V:	I:	V: 45.0	l: 3.2	V:	l:
		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V: 1.5	l: 5.9	V:	l:	V: 42.0	l: 5.0	V:	l:	V:	l:
		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
i	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	l:
		Value Range	>	2.8	<0	.05	<	<5	>1	19	<	:10
	EXTREME	Index Range		10	1	0	1	10	1	0		10
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	l:
-	Material Descriptio									<u>Ban</u>	nk Sketch	
nk	Mostly smaller grave	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	have low b el matrix gr	ank erosion eater than 5	potential) 0% of bank			ljust)		<u>Ban</u>	<u>ık Sketch</u>	
nk	Mostly smaller grave Materials Bedrock (Bedrock b Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) iustment)	have low b el matrix gr	ank erosion eater than 5	potential) 0% of bank			ljust)	BAN		IK Sketch	MENT
nk	Mostly smaller grave Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment)	have low b el matrix gr	ank erosion eater than 5	potential) 0% of bank			ljust)	BANK			MENT
nk	Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments stratified layers were	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment)	have low b el matrix gr	ank erosion eater than 5	potential) 0% of bank			ljust)	BAN			MENT
at	Mostly smaller grave Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : observed	have low b	eater than 5 eater than 5 pank materia	potential) 0% of bank I that is com	posed of sa		ljust)	BAN			MENT
nk	Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments stratified layers were ification	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : observed	have low b	eater than 5 eater than 5 pank materia	potential) 0% of bank I that is com	posed of sa		ljust)		(MATERIA		
at	Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments stratified layers were ification	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : observed	i have low b rel matrix gr eentage of b	eater than 5 eater than 5 pank materia	potential) 0% of bank I that is com	posed of sa	ind)	ljust) VERY HIGH	STRA	(MATERIA	L ADJUSTI	
at at	Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments stratified layers were ification Add 5-10 points depe	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : observed ending on position c	i have low b rel matrix gr eentage of b	ank erosion eater than 5 aank materia ayers in rela	potential) 0% of bank I that is com	posed of sa	ind)		STRA		L ADJUSTI	_
nk	Mostly smaller gravel Materials Bedrock (Bedrock b Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments stratified layers were ification Add 5-10 points depe	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) iustment) : observed ending on position of LOW	i have low b rel matrix gr eentage of b	ank erosion eater than 5 aank materia ayers in rela MODERATE	potential) 0% of bank I that is com	full stage	ind)	VERY HIGH	STRA		L ADJUSTI	

	Bank Height (ft):		Bank	Height/	Root D	Very Hig	-	oot	Bank	Angle	Sur	face
	Bankfull Height (ft):			kfull Ht		Height		sity %		rees)		ction%
ĺ	_ = = =	Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
	-	Choice	V:	l:	V:	Ŀ	V:	l:	V:	l:	V:	1:
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
a		Choice	V :	l:	V:	l:	V :	l:	V: 50.0	l: 3.4	V: 60.0	I: 3.
ent		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
D.	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V:	l:	V: 0.35	I: 5.4	V:	l:	V:	l:	V:	l:
		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
Bank Erosion Potential	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
Ч Ч		Choice	V:	l:	V:	l:	V: 21.0	l: 7.1	V:	l:	V:	l:
an		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
ם	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V: 2.8		V:	Ŀ	V:	l:	V:	l:	V:	l:
		Value Range		·2.8	<0.	.05		<5		19		10
	EXTREME							10	1			0
	V = value, I = index < Material Descriptio	Index Range Choice n:		10 I:		0 I:	V:	10 I: (Sum one	V:	0 I: om each	V:	0 I: 28.4
	V = value, I = index	Index Range Choice n:		10	1	0 I:	V:	l:	V:	0 I: om each	v: column)	l:
	V = value, I = index Material Descriptio Mostly smaller gravel	Index Range Choice n: mixed with sand	V:	10 I:	1	0 I:	V:	l:	V:	0 I: om each	v: column)	l:
	V = value, I = index Material Descriptio Mostly smaller gravel Materials	Index Range Choice n: mixed with sand anks have very low	V: bank erosi	10 I: on potential)	1 V:	0 I:	V:	l:	V:	0 I: om each	v: column)	l:
	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba	Index Range Choice n: mixed with sand anks have very low nposed of boulders	V: bank erosi	10 I: on potential) pank erosion	V:	0 I: SUB	V: -TOTAL	I: (Sum one	V:	0 I: om each	v: column)	l:
	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor	Index Range Choice n: mixed with sand anks have very low mposed of boulders points. If sand/grav	V: bank erosi s have low l rel matrix g	10 I: on potential) pank erosion reater than 5	V:	0 I: SUB	V: -TOTAL	I: (Sum one	V:	0 I: om each	v: column)	l:
	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10	Index Range Choice n: mixed with sand anks have very low mposed of boulders points. If sand/grav nts depending perc	V: bank erosi s have low l rel matrix g	10 I: on potential) pank erosion reater than 5	V:	0 I: SUB	V: -TOTAL	I: (Sum one	V:	0 I: om each	v: column)	l:
	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi	Index Range Choice n: mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc	V: bank erosi s have low l rel matrix g	10 I: on potential) pank erosion reater than 5	V:	0 I: SUB	V: -TOTAL	I: (Sum one	V:	0 I: om each	v: column)	l:
	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	Index Range Choice n: mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc	V: bank erosi s have low l rel matrix g	10 I: on potential) pank erosion reater than 5	V:	0 I: SUB	V: -TOTAL	I: (Sum one	V: e index fr	0 I: om each Bar	v: column)	I: 28.4
	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	Index Range Choice n: mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc	V: bank erosi s have low l rel matrix g	10 I: on potential) pank erosion reater than 5	V:	0 I: SUB	V: -TOTAL	I: (Sum one	V: e index fr	0 I: om each Bar	v: column) k Sketch	I: 28.4
ank	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	Index Range Choice n: mixed with sand anks have very low mposed of boulders points. If sand/grav nts depending perc ustment)	V: bank erosi s have low l rel matrix g	10 I: on potential) pank erosion reater than 5	V:	0 I: SUB	V: -TOTAL	I: (Sum one	V: e index fr	0 I: om each Bar	v: column) k Sketch	I: 28.4
ank	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju	Index Range Choice n: mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc ustment)	V: bank erosi s have low l rel matrix g	10 I: on potential) pank erosion reater than 5	V:	0 I: SUB	V: -TOTAL	I: (Sum one	V: e index fr	0 I: om each Bar	v: column) k Sketch	I: 28.4
rat	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju	Index Range Choice n: mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc ustment)	V: bank erosi s have low l rel matrix g	10 I: on potential) pank erosion reater than 5	V:	0 I: SUB	V: -TOTAL	I: (Sum one	V: e index fr	0 I: om each Bar	v: column) k Sketch	I: 28.4
rat	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju tification Comments: stratified layers were	Index Range Choice n: mixed with sand anks have very low nposed of boulders points. If sand/grav ints depending perc ustment) : observed	V: bank erosi a have low l rel matrix g centage of l	10 I: on potential) bank erosion reater than 5 bank materia	1 V: potential) 0% of bank i I that is com	0 I: SUB material, the posed of sa	V: -TOTAL	I: (Sum one	V: e index fr	0 I: om each Bar	v: column) k Sketch	I: 28.4
rat	V = value, I = index Material Description Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju tification Comments: stratified layers were tification	Index Range Choice n: mixed with sand anks have very low nposed of boulders points. If sand/grav ints depending perc ustment) : observed	V: bank erosi a have low l rel matrix g centage of l	10 I: on potential) bank erosion reater than 5 bank materia	1 V: potential) 0% of bank i I that is com	0 I: SUB material, the posed of sa	V: -TOTAL	I: (Sum one	V: e index fr	0 I: Om each Bar	v: column) k Sketch	I: 28.4
rat	V = value, I = index Material Description Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju tification Comments: stratified layers were tification	Index Range Choice n: mixed with sand anks have very low nposed of boulders points. If sand/grav ints depending perc ustment) : observed	V: bank erosi a have low l rel matrix g centage of l	10 I: on potential) bank erosion reater than 5 bank materia	1 V: potential) 0% of bank i I that is com	0 I: SUB material, the posed of sa	V: -TOTAL	I: (Sum one	V: e index fr	0 I: Om each Bar	V: column) k Sketch	I: 28.4
rat	V = value, I = index Material Description Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju tification Comments: stratified layers were tification	Index Range Choice n: mixed with sand anks have very low nposed of boulders points. If sand/grav ints depending perc ustment) : observed	V: bank erosi have low l rel matrix g centage of l	10 I: on potential) bank erosion reater than 5 bank materia	1 V: potential) 0% of bank to I that is com tion to bankf	0 I: SUB material, the posed of sa	v: -TOTAL	I: (Sum one	V: e index fr BANH BANH	0 I: Om each Bar	V: column) k Sketch	I: 28.4

BEHI RATING

Very High

Bank location description (check one) The BEHI was conducted at several locations on T1A-1 at representative bank features throughout.

_						Modera	te Rating					
	Bank Height (ft):		Bank	Height/	Root D)epth/	Ro	oot	Bank	Angle	Surf	face
	Bankfull Height (ft):		Bank	full Ht	Bank H	leight	Dens	sity %	(Deg	rees)	Protec	ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V: 80.0	l: 1
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
Potential		Choice	V:	l:	V: 0.85	l: 2.2	V: 63.0	l: 3.3	V: 45.0	l: 3.2	V:	I:
GU		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
0 L	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V: 1.5	l: 5.9	V:	l:	V :	l:	V:	I:	V:	l:
sic		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
Erosion	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
Y		Choice	V: 2.0	l: 7.9	V: 0.25	l: 6.5	۷:	l:	V:	l:	V:	I:
bank		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
-	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V :	l:	V:	l:	V:	l:
		Value Range	>	2.8	<0.	05		<5	>1	19	<	10
	EXTREME	Index Range	·	10	10	0	· · · · · ·	10	1	0	1	0
		Choice					. v.				V:	
	V = value, I = index k Material Descriptio Mostly smaller gravel	n:	V:	l:	V:	I: SUB	V: -TOTAL	I: (Sum one	V: e index fr			l: 16.
	k Material Descriptio	n: I mixed with sand anks have very low nposed of boulders points. If sand/grav ints depending perc)	bank erosic have low b rel matrix gr	on potential) pank erosion eater than 5	potential) 0% of bank r	SUB	-TOTAL	(Sum one		om each	column)	-
ınl	k Material Descriptio Mostly smaller gravel k Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment)	bank erosic have low b rel matrix gr	on potential) pank erosion eater than 5	potential) 0% of bank r	SUB	-TOTAL	(Sum one	index fr	om each <u>Ban</u>	column)	16.
anl	k Material Descriptio Mostly smaller gravel k Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adj	n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : observed	bank erosio have low b rel matrix gr centage of b	on potential) ank erosion eater than 5 ank materia	potential) 0% of bank r I that is comp	SUB	-TOTAL	(Sum one	BANK	MATERIA	column) k Sketch	16.
anl	k Material Descriptio Mostly smaller gravel k Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adju tification Comments: stratified layers were tification Add 5-10 points dependent VERY LOW	n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : observed	bank erosic have low b el matrix gr entage of b	on potential) Pank erosion eater than 5 ank materia ayers in rela	potential) 0% of bank r I that is comp tion to bankf	SUB	en do not ac	(Sum one	BANK	MATERIA	column) k Sketch	16.
rat	k Material Descriptio Mostly smaller gravel k Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adju tification Comments: stratified layers were tification Add 5-10 points dependent	n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : observed ending on position c	bank erosic have low b el matrix gr entage of b	on potential) vank erosion eater than 5 ank materia	potential) 0% of bank r I that is comp tion to bankf	SUB	en do not ac	(Sum one	BANK		column) k Sketch	16.
rat	k Material Descriptio Mostly smaller gravel k Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adju tification Comments: stratified layers were tification Add 5-10 points dependent VERY LOW	n: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perce ustment) : observed ending on position c LOW 10-19.9	bank erosic have low b el matrix gr entage of b	on potential) Pank erosion eater than 5 ank materia ayers in rela	potential) 0% of bank r I that is comp tion to bankf	SUB material, the posed of sa ull stage HIGH	en do not ac	(Sum one djust) VERY HIGH	BANK		COlumn)	16. //ENT

						Moucra	te Rating					
	Bank Height (ft):		Bank	Height/	Root D	epth/	Ro	oot	Bank	Angle	Sur	face
	Bankfull Height (ft):		Banl	xfull Ht	Bank I	leight	Dens	sity %	(Deg	rees)	Prote	ction%
Ĩ		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V: 80.0	l: 1
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
пa		Choice	V :	l:	V:	l:	V:	l:	V: 45.0	l: 3.2	V:	l:
Potential		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
ō	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V: 1.3	l: 4.6	V: 0.50	l: 3.9	V: 40.0	l: 5.1	V:	l:	V:	I:
Erosion		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
2	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
Bank E		Choice	V:	l:	V:	l:	V :	l:	V:	l:	V :	l:
Da		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
-	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V :	l:	V:	l:	V:	l:	V:	l:	V:	I:
		Value Range		2.8	<0.	05	<	:5	>1	19	<	10
	EXTREME											0
-	EXTREME V = value, I = index Material Descriptio Mostly smaller grave	Index Range Choice n:		10 I:	1 V:	0 I:	1 V :	0 I:		0 I: om each	1 V:	0 I: 18.7
ank	V = value, I = index Material Descriptio Mostly smaller grave	Index Range Choice I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	V: bank erosi have low t el matrix g	10 I: on potential) pank erosion reater than 5	1 V: potential) 0% of bank I	0 I: SUB	TOTAL (0 I: (Sum one	V: e index fro	0 I: om each Ban	v: column)	I: 18.7
rat	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock b: Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments Few stratified layers	Index Range Choice In: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment)	V: bank erosi have low t el matrix g	10 I: on potential) pank erosion reater than 5	1 V: potential) 0% of bank I	0 I: SUB	TOTAL (0 I: (Sum one	V: e index fro	0 I: om each Ban	V: column)	I: 18.7
ank rat	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adj ification Comments Few stratified layers to ification	Index Range Choice Choice	V: bank erosi have low t el matrix g entage of t	10 I: on potential) pank erosion reater than 5 pank materia	1 V: potential) 0% of bank I I that is com	0 I: SUB	TOTAL (0 I: (Sum one	V: e index fro	0 I: om each Ban	V: column)	I: 18.7
ank rat	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock b: Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments Few stratified layers	Index Range Choice Choice	V: bank erosi have low t el matrix g entage of t	10 I: on potential) pank erosion reater than 5 pank materia	1 V: potential) 0% of bank I I that is com	0 I: SUB	TOTAL (0 I: (Sum one	1 V: e index fro	0 I: Om each Ban	V: column)	I: 18.7 MENT
ank rat	V = value, I = index Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adj ification Comments Few stratified layers to ification	Index Range Choice Choice	V: bank erosi have low b el matrix g entage of b	10 I: on potential) pank erosion reater than 5 pank materia	1 V: potential) 0% of bank i I that is comp tion to bankf	0 I: SUB	nd)	0 I: (Sum one	1 V: e index fro BANK BANK	0 I: Om each Ban	V: column) k Sketch	I: 18.7 MENT {

The BEHI was conducted at several ocations on T1A-3 at representative bank features throughout.

BEHI RATING

Moderate

-	B					-	Rating				-	
	Bank Height (ft):			Height/	Root I	•		oot	Bank	-		face
	Bankfull Height (ft):			cfull Ht	Bank	Height		sity %		rees)		ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
		Choice	V:	l:	V:	l:	V:	l:	V: 45.0	l: 3.2	V: 70.0	l: 3
		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V:	l:	V: 0.50	l: 3.9	V: 35.0	l: 5.5	V:	l:	V:	l:
		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
		Choice	V: 2.0	l: 7.9	V:	l:	V:	l:	V:	l:	V:	l:
		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
1	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
		Value Range	>	2.8	<0	.05	<	:5	>1	19	<	10
								0	4			0
	EXTREME	Index Range		10	1	0	1	0		0	1	0
	EXTREME V = value, I = index k Material Descriptio Mostly smaller grave	Choice	V:	10 I:	1 V:	l:	V:	I: (Sum one	V:	I: om each	V:	I: 23.7
nk	V = value, I = index k Material Descriptio Mostly smaller grave	Choice Choice I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	V: bank erosi have low t rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank	I: SUB	V: -TOTAL (I: (Sum one	V:	I: om each	v: column)	l:
nk	V = value, I = index k Material Descriptio Mostly smaller gravel k Materials Bedrock (Bedrock b: Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments Few stratified layers	Choice Choice	V: bank erosi have low t rel matrix g	I: on potential) pank erosion reater than 5	V: potential) 0% of bank	I: SUB	V: -TOTAL (I: (Sum one	V: e index fr	I: om each Ban	v: column)	I: 23.
ınk rat	V = value, I = index k Material Descriptio Mostly smaller gravel k Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adj tification Comments	Choice Choice	V: bank erosi have low t rel matrix g centage of t	I: on potential) bank erosion reater than 5 bank materia	V: potential) 0% of bank I that is com	I: SUB material, the posed of sa	V: -TOTAL (I: (Sum one	V: index fr	I: om each Ban	v: column) k Sketch	I: 23.7 MENT
rat	V = value, I = index k Material Descriptio Mostly smaller gravel k Materials Bedrock (Bedrock b: Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments Few stratified layers tification	Choice Choice	V: bank erosi have low b rel matrix g centage of b	I: on potential) bank erosion reater than 5 bank materia	V: potential) 0% of bank I that is com	I: SUB material, the posed of sa	v: -TOTAL (en do not ad ind)	I: (Sum one	V: e index fr BANH	I: om each Ban	V: column) k Sketch	I: 23.7
rat	V = value, I = index k Material Descriptio Mostly smaller gravel k Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 points Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments Few stratified layers of tification Add 5-10 points dependent	Choice Ch	V: bank erosi have low b rel matrix g centage of b	I: on potential) pank erosion reater than 5 pank materia	V: potential) 0% of bank I that is com	I: SUB material, the posed of sa full stage	v: -TOTAL (en do not ad ind)	I: (Sum one	V: e index fr BANH		V: column) k Sketch	I: 23.1

			-3)		Neach.		ear Feet	Date.	2/21/12	Crew:	AH	
_							h Rating					
	Bank Height (ft):			Height/	Root D	•		oot		Angle		face
	Bankfull Height (ft):			kfull Ht	Bank H	-		sity %		rees)		ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range Choice	1.0 V:	1.9	1.0 V:	1.9	1.0 V:	1.9	1.0 V:	1.9	1.0 V:	1.9
				l:		l:		l:		l:		1:
	1.00%	Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
a	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
nti		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V: 65.0	l: 2.
Potential	MODEDATE	Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
ř.	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0 V:	5.9	4.0 V: 65.0	5.9	4.0	5.9
lon		Choice	V:	l:	V: 0.30	l: 5.9		l:		I: 4.4	V:	l:
Erosion		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
ũ	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
Bank I		Choice	V:	l:	V:	l:	V: 19.5	l: 7.3	V:	l:	V:	l:
ñ		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	l:
		Value Range		2.8	<0.0			<5		119		10
	EXTREME	Index Range		10	1(10		10		10
		Choice	V: 7.1	l: 10.0	V:	l:	V:	l:	V:	I:	V:	1:
n	V = value, I = index					SUB	-TOTAL	(Sum one	e index fr			30.4
ank	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock b: Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 points Silt Clay (+ 0: no adj ification Comments	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment)	have low l rel matrix g	bank erosion reater than 5	potential) 0% of bank n	naterial, the	en do not ac			Ban	column)	30.4 MENT 7
ank	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock bi Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments Few stratified layers	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment)	have low l rel matrix g	bank erosion reater than 5	potential) 0% of bank n	naterial, the	en do not ac			Ban	k Sketch	
ank trat	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments Few stratified layers ification	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed	have low l rel matrix g centage of l	bank erosion reater than 5 bank materia	potential) i0% of bank n I that is comp	naterial, the	en do not ac			Ban	k Sketch	
ank	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock bi Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments Few stratified layers	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed	have low l rel matrix g centage of l	bank erosion reater than 5 bank materia	potential) i0% of bank n I that is comp	naterial, the	en do not ac		BAN	Ban K MATERIA	k Sketch	MENT
ank trat	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock be Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments Few stratified layers ification	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed	have low l rel matrix g centage of l	bank erosion reater than 5 bank materia	potential) 10% of bank n I that is comp	naterial, the	en do not ac nd)		BANI	Ban K MATERIA	IK Sketch	MENT

 Bank location description (check one)
 GRAND TOTAL
 45.4

 The BEHI was conducted at several locations on T1A-3 at representative bank features throughout.
 BEHI RATING
 Very High

						Moderat					-	
	Bank Height (ft):			Height/	Root D	•		oot	Bank	-		face
	Bankfull Height (ft):		Bank	tfull Ht	Bank	Height	Dens	sity %	(Deg	rees)	Prote	ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V: 90.0	l: 1
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
		Choice	V:	l:	V:	l:	V:	l:	V: 40.0	l: 2.9	V:	l:
2		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V: 1.2	l: 4.0	V: 0.50	l: 4.0	V: 40.0	l: 5.1	V:	l:	V:	I:
		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
;	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V :	I:
		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
1	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
		Value Range	>	2.8	<0.	.05	<	<5	>1	19	<	:10
	EXTREME	Index Range		10	1	0	1	0	1	0		10
	V = value, I = index k Material Descriptio Mostly smaller grave		V:	10 I:	1 V:	0 I: SUB	V:	10 1: (Sum one	V:		V:	10 I: 17.
	V = value, I = index k Material Descriptio	Choice Ch	V: bank erosio have low b el matrix gr	I: on potential) bank erosion eater than 5	V: potential) 0% of bank (I: SUB	V: -TOTAL (I: (Sum one	V:	I: om each	v: column)	I:
	V = value, I = index k Material Descriptio Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points	Choice Ch	V: bank erosio have low b el matrix gr	I: on potential) bank erosion eater than 5	V: potential) 0% of bank (I: SUB	V: -TOTAL (I: (Sum one	V: e index fro	I: om each	v: column) k Sketch	I: 17.
nl	V = value, I = index k Material Descriptio Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points	Choice Choice	V: bank erosio have low b rel matrix gr centage of b	I: on potential) pank erosion eater than 5 pank materia	V: potential) 0% of bank i I that is com	I: SUB material, the posed of sa	V: -TOTAL (I: (Sum one	V: index fro	I: om each Ban	V: column) k Sketch	I: 17.
nl	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments stratified layers were tification	Choice Choice	V: bank erosid have low b el matrix gr centage of b	I: on potential) pank erosion eater than 5 pank materia	V: potential) 0% of bank i I that is com	I: SUB material, the posed of sa	V: -TOTAL (en do not ad nd)	I: (Sum one	V: e index fro BANK BANK	I: om each Ban	V: column) k Sketch	I: 17.
at	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments stratified layers were tification Add 5-10 points depe	Choice Ch	V: bank erosid have low b el matrix gr centage of b	I: on potential) oank erosion eater than 5 oank materia ayers in rela	V: potential) 0% of bank i I that is com	I: SUB material, the posed of sa full stage	V: -TOTAL (en do not ad nd)	l: (Sum one	V: e index fro BANK BANK		V: column) k Sketch	I: 17.

	Dept Llaight (ft)		Denk	llaimht/	Deet	Depth/	Rating	oot	Bank	٨٠٠٠	Curr	face
	Bank Height (ft): Bankfull Height (ft):			Height/ kfull Ht		Height		sity %		rees)		ction%
	Bankian Height (it).	Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V :	l:	V:	l:	V: 80.0	l: 1
	LOW	Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
8	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
		Choice	V:	l:	V:	l:	V:	l:	V: 40.0	l: 2.9	V:	l:
	MODEDATE	Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
-	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
5		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
j	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
		Choice	V: 1.6	l: 6.0	V: 0.20	l: 7.2	V: 18.7	l: 7.4	V:	l:	V:	l:
ז		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	۷:	l:	V:	l:	V:	I:	V:	I:
		Value Range	>	>2.8	<0	0.05		<5	>1	19	<	10
	EXTREME	Index Range		10	·	10		10	1	0	1	0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
nk	V = value, I = index Material Descriptio Mostly smaller grave Materials	I mixed with sand				SUB	-TOTAL	(Sum one	index fr		column)	25.4
nk	Material Description Mostly smaller grave Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	have low l vel matrix g	bank erosion reater than 5	0% of bank	material, the	en do not a		index fr			25.4
In	Material Description Mostly smaller grave Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	have low l vel matrix g	bank erosion reater than 5	0% of bank	material, the	en do not a			Bar		
rat	Material Description Mostly smaller grave Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) justment) :: observed	s have low l rel matrix g centage of l	bank erosion reater than 5 bank materia	0% of bank I that is com	material, the	en do not a		BANK		k <u>Sketch</u>	/ENT
rat	Material Description Mostly smaller grave Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments stratified layers were ification	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) justment) :: observed	s have low l rel matrix g centage of l	bank erosion reater than 5 bank materia	0% of bank I that is com	material, the	en do not ao nd)		BANK		IL ADJUSTN	/ENT
nk	Material Description Mostly smaller grave Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments stratified layers were ification Add 5-10 points depe	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc justment) :: observed ending on position c	s have low l rel matrix g centage of l	bank erosion reater than 5 bank materia	0% of bank I that is com	material, the sposed of sa	en do not ao nd)	djust)	BANK		IL ADJUSTN	NENT
at	Material Description Mostly smaller grave Materials Bedrock (Bedrock b Boulders (Banks con Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj ification Comments stratified layers were ification Add 5-10 points depe	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perce j justment) :: observed ending on position c LOW 10-19.9	s have low l rel matrix g centage of l	bank erosion reater than 5 bank materia layers in rela	0% of bank I that is com	material, the sposed of sa full stage	en do not ao nd)	djust) VERY HIGH	BANK		IL ADJUSTN	NENT

	Bank Height (ft):		Bank	Height/	Root	Depth/	R	oot	Bank	Angle	Sur	face
	Bankfull Height (ft):		Ban	kfull Ht	Bank	Height	Den	sity %	(Deg	jrees)	Prote	ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	l:
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
_	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
		Choice	۷:	l:	V:	l:	V:	l:	V: 50.0	l: 3.4	V: 70.0	l: 3
D,		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
5	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V:	l:	V:	l:	V :	l:	V:	l:	V:	I:
5		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
		Choice	V: 1.8	l: 7.0	V: 0.22		V: 15.4	l: 7.8	V:	l:	V:	I:
		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
1	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	l:
		Value Denge		>2.8	<(0.05		<5	>1	119		10
	EXTREME	Value Range				10		10	1	10		10
	EXTREME V = value, I = index K Material Descriptic Mostly smaller grave K Materials	Index Range Choice		10 I:		10 I: SUB	V :	10 I: (Sum one	V:		V :	I: 28.4
	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks co Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points	Index Range Choice I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	V: bank eros have low el matrix g	10 I: ion potential) bank erosion reater than 5	V: potential) 0% of bank	I: SUB	V: -TOTAL	I: (Sum one	V:	I: om each	v: column)	l:
,	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks co Cobble (Subtract 10 Gravel (Add 5-10 po	Index Range Choice I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	V: bank eros have low el matrix g	10 I: ion potential) bank erosion reater than 5	V: potential) 0% of bank	I: SUB	V: -TOTAL	I: (Sum one	V: e index fr	I: om each	v: column) ak Sketch	I: 28.4
nl	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks co Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points	Index Range Choice In: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : observed	V: bank eros have low el matrix g ventage of	10 I: ion potential) bank erosion reater than 5 bank materia	V: potential) 0% of bank I that is con	I: SUB	V: -TOTAL	I: (Sum one	V: index fr	I: om each Ban	V: column) hk Sketch	I: 28.4 MENT
nl	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks co Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments stratified layers were tification	Index Range Choice In: I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : observed	V: bank eros have low el matrix g ventage of	10 I: ion potential) bank erosion reater than 5 bank materia	V: potential) 0% of bank I that is con	I: SUB	v: -TOTAL	I: (Sum one	V: e index fr BANI BANI	I: om each Ban	V: column) N ADJUSTI	I: 28.4 MENT
nł	V = value, I = index k Material Description Mostly smaller grave k Materials Bedrock (Bedrock b Boulders (Banks co Cobble (Subtract 10 Gravel (Add 5-10 po Sand (Add 10 points Silt Clay (+ 0: no adj tification Comments stratified layers were tification Add 5-10 points depa	Index Range Choice Choice I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : observed ending on position o	V: bank eros have low el matrix g ventage of	10 I: ion potential) bank erosion reater than 5 bank materia layers in rela	V: potential) 0% of bank I that is con	I: SUB material, the sposed of sa	v: -TOTAL	l: (Sum one	V: e index fr BANI BANI		V: column) N ADJUSTI	I: 28.4 MENT

						Moderat	e Rating	-	2/21/12	Crew:		
	Bank Height (ft):		Bank	Height/	Root I	Depth/	R	oot	Bank	Angle	Sur	face
	Bankfull Height (ft):		Ban	kfull Ht	Bank	Height	Den	sity %	(Deg	rees)	Prote	ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V: 90.0	l: 1
		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9	2.0	3.9
n		Choice	V :	l:	V:	l:	V :	l:	V: 40.0	l: 2.9	V:	I:
E		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
Potential	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V: 1.3	l: 4.6	V: 0.50	l: 3.9	V: 43.0	l: 4.9	V:	l:	V:	l:
		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
ank		Choice	V:	l:	V:	l:	V :	l:	V:	l:	V:	I:
Dal	VERY HIGH	Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
-		Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	1:
		Value Range	>	2.8	<0	.05		<5	>1	19	<	:10
	EXTREME	Index Range		10	1	0		10	1	0	·	10
		Choice	V:	I:	V:	l:	V:	l:	V:	l:	V:	l:
	V = value, I = index Material Descriptio Mostly smaller gravel					SUB	-TOTAL	(Sum one	index fro	om each	column) k Sketch	
	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	have low l rel matrix g	oank erosion reater than 5	0% of bank	material, the	en do not ac	(Sum one	index fr	om each		
	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc)	have low l rel matrix g	oank erosion reater than 5	0% of bank	material, the	en do not ac	(Sum one		om each <u>Ban</u>		17.
anl	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points)	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed	have low l rel matrix g centage of l	pank erosion reater than 5 pank materia	0% of bank I that is com	material, the posed of sa	en do not ac	(Sum one	BANK	om each Ban	k Sketch	MENT
anl	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adj ification Comments Few stratified layers of ification Add 5-10 points dependent	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed ending on position of LOW	have low l rel matrix g centage of l	bank erosion reater than 5 bank materia layers in rela	0% of bank I that is com	material, the posed of sa full stage HIGH	en do not ao nd)	(Sum one djust) VERY HIGH	BANK		<u>k Sketch</u>	MENT
rat	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 poi Sand (Add 10 points) Silt Clay (+ 0: no adj ification Comments Few stratified layers of ification Add 5-10 points depe	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed anding on position c	have low l rel matrix g centage of l	pank erosion reater than 5 pank materia	0% of bank I that is com	material, the posed of sa full stage	en do not ao nd)	(Sum one	BANK		<u>k Sketch</u>	MENT
rat	Material Descriptio Mostly smaller gravel Materials Bedrock (Bedrock ba Boulders (Banks cor Cobble (Subtract 10 Gravel (Add 5-10 points) Sand (Add 10 points) Silt Clay (+ 0: no adj ification Comments Few stratified layers of ification Add 5-10 points dependent	I mixed with sand anks have very low mposed of boulders points. If sand/grav ints depending perc) ustment) : were observed ending on position c LOW 10-19.9	have low l rel matrix g centage of l	bank erosion reater than 5 bank materia layers in rela	0% of bank I that is com	material, the posed of sa full stage HIGH	en do not ao nd)	(Sum one djust) VERY HIGH	BANK		<u>k Sketch</u>	MENT

	k Height (ft): kfull Height (ft): VERY LOW LOW MODERATE HIGH VERY HIGH EXTREME value, l = index	Value Range Index Range Choice Value Range Index Range Value Range Index Range Value Range Index Range Index Range Index Range Index Range Value Range Index Range Choice Value Range Index Range	Banl 1.0 1.0 V: 1.11 2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.8 2.1 8.0 V: >	Height/ kfull Ht 1.1 1.9 1. 1.19 3.9 I: 1.5 5.9 I: 2.0 7.9 I: 2.0 7.9 I: 2.8 9.0 I: 2.8 9.0 I: 2.8 10 10 1.5		Depth/ Height 0.9 1.9 1. 0.50 3.9 1. 0.30 5.9 1. 4.3 0.15 7.9 1. 0.05 9.0 1.	Ro Dens 100 1.0 V: 79 2.0 V: 54 4.0 V: 32.2 29 6.0 V: 14 8.0 V:	sity % 80 1.9 I: 55 3.9 I: 30 5.9 I: 5.7 7.9 I: 5 9.0	Bank (Deg 0.0 1.0 V: 21.0 2.0 V: 60.0 61.0 4.0 V: 81.0 6.0 V: 91.0	•	Surf Protect 100 1.0 V: 79 2.0 V: 70.0 54 4.0 V: 29 6.0 V:	
	VERY LOW LOW MODERATE HIGH VERY HIGH EXTREME	Index Range Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Index Range Index Range Index Range Choice Value Range Index Range	1.0 1.0 V: 1.11 2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.8 0 V: 1.8 0 V: 1.8 0 V: 1.8 0 V: 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1.1 1.9 1.19 3.9 1: 1.5 5.9 1: 2.0 7.9 1: 7.0 2.8 9.0 1: 2.8	1.0 1.0 V: 0.9 2.0 V: 0.5 4.0 V: 0.46 0.29 6.0 V: 0.14 8.0 V:	0.9 1.9 1: 0.50 3.9 1: 0.30 5.9 1: 4.3 0.15 7.9 1: 0.05 9.0 1:	100 1.0 V: 79 2.0 V: 54 4.0 V: 32.2 29 6.0 V: 14 8.0	80 1.9 1: 55 3.9 1: 30 5.9 1: 5.7 15 7.9 1: 5 9.0	0.0 1.0 V: 21.0 2.0 V: 60.0 61.0 4.0 V: 81.0 6.0 V: 91.0	20.0 1.9 1: 60.0 3.9 1: 3.9 80.0 5.9 1: 90.0 7.9 1:	100 1.0 V: 79 2.0 V: 70.0 54 4.0 V: 29 6.0	80 1.9 1: 55 3.9 1: 30 5.9 1: 15 7.9
	LOW MODERATE HIGH VERY HIGH EXTREME	Index Range Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Index Range Index Range Index Range Choice Value Range Index Range	1.0 V: 1.11 2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.8 0 V: 1.8 0 V: 2.1 8.0 V: 2.1	1.9 1.19 3.9 1. 1.5 5.9 1. 2.0 7.9 1. 7.9 1. 7.9 1. 7.9 1. 7.9 1. 7.9 1. 2.8 9.0 1. 2.8	1.0 V: 0.9 2.0 V: 0.5 4.0 V: 0.46 0.29 6.0 V: 0.14 8.0 V:	1.9 I: 0.50 3.9 I: 0.30 5.9 I: 4.3 0.15 7.9 I: 0.05 9.0 I:	1.0 V: 79 2.0 V: 54 4.0 V: 32.2 29 6.0 V: 14 8.0	1.9 I: 55 3.9 I: 30 5.9 I: 5.7 15 7.9 I: 5 9.0	1.0 V: 21.0 2.0 V: 60.0 61.0 4.0 V: 81.0 6.0 V: 91.0	1.9 1: 60.0 3.9 1: 3.9 80.0 5.9 1: 90.0 7.9 1:	1.0 V: 79 2.0 V: 70.0 54 4.0 V: 29 6.0	1.9 I: 55 3.9 I: 30 5.9 I: 15 7.9
	LOW MODERATE HIGH VERY HIGH EXTREME	Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Index Range Choice Value Range Index Range	V: 1.11 2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.8 0 V: 1.8 0 V: 5 0 0 0 0 0 0 0 0 0 0 0 0 0	I: 1.19 3.9 I: 1.5 5.9 I: 2.0 7.9 I: 2.8 9.0 I: 2.8 9.0 I: 2.8	V: 0.9 2.0 V: 0.5 4.0 V: 0.46 0.29 6.0 V: 0.14 8.0 V:	I: 0.50 3.9 I: 0.30 5.9 I: 4.3 0.15 7.9 I: 0.05 9.0 I:	V: 79 2.0 V: 54 4.0 V: 32.2 29 6.0 V: 14 8.0	I: 55 3.9 I: 30 5.9 I: 5.7 15 7.9 I: 5 9.0	V: 21.0 2.0 V: 60.0 61.0 4.0 V: 81.0 6.0 V: 91.0	I: 60.0 3.9 I: 3.9 80.0 5.9 I: 90.0 7.9 I:	V: 79 2.0 V: 70.0 54 4.0 V: 29 6.0	I: 55 3.9 I: 30 5.9 I: 15 7.9
V = v	MODERATE HIGH VERY HIGH EXTREME	Value Range Index Range Value Range Index Range Choice Value Range Index Range Choice Value Range Index Range Choice Value Range Index Range	1.11 2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.8 6.0 V: 1.8 0 V: V: 5	1.19 3.9 1: 1.5 5.9 1: 2.0 7.9 1: 7.0 2.8 9.0 1: 2.8	0.9 2.0 V: 0.5 4.0 V: 0.46 0.29 6.0 V: 0.14 8.0 V:	0.50 3.9 I: 0.30 5.9 I: 4.3 0.15 7.9 I: 0.05 9.0 I:	79 2.0 V: 54 4.0 V: 32.2 29 6.0 V: 14 8.0	55 3.9 1: 30 5.9 1: 5.7 15 7.9 1: 5 9.0	21.0 2.0 V: 60.0 61.0 4.0 V: 81.0 6.0 V: 91.0	60.0 3.9 1: 3.9 80.0 5.9 1: 90.0 7.9 1:	79 2.0 V: 70.0 54 4.0 V: 29 6.0	55 3.9 1: 3 30 5.9 1: 15 7.9
V = v	MODERATE HIGH VERY HIGH EXTREME	Index Range Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Choice Value Range Index Range	2.0 V: 1.2 4.0 V: 1.6 6.0 V: 1.8 2.1 8.0 V: >	3.9 I: 1.5 5.9 I: 2.0 7.9 I: 2.8 9.0 I: 2.8	2.0 V: 0.5 4.0 V: 0.46 0.29 6.0 V: 0.14 8.0 V:	3.9 I: 0.30 5.9 I: 4.3 0.15 7.9 I: 0.05 9.0 I:	2.0 V: 54 4.0 V: 32.2 29 6.0 V: 14 8.0	3.9 I: 30 5.9 I: 5.7 15 7.9 I: 5 9.0	2.0 V: 60.0 61.0 4.0 V: 81.0 6.0 V: 91.0	3.9 1: 3.9 80.0 5.9 1: 90.0 7.9 1:	2.0 V: 70.0 54 4.0 V: 29 6.0	3.9 1: 3 30 5.9 1: 15 7.9
V = v	MODERATE HIGH VERY HIGH EXTREME	Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range Value Range Value Range Index Range	V: 1.2 4.0 V: 1.6 6.0 V: 1.8 2.1 8.0 V: >	I: 1.5 5.9 I: 2.0 7.9 I: 2.8 9.0 I: 2.8	V: 0.5 4.0 V: 0.46 0.29 6.0 V: 0.14 8.0 V:	I: 0.30 5.9 I: 4.3 0.15 7.9 I: 0.05 9.0 I:	V: 54 4.0 V: 32.2 29 6.0 V: 14 8.0	I: <u>30</u> 5.9 I: 5.7 15 7.9 I: 5 9.0	V: 60.0 61.0 4.0 V: 81.0 6.0 V: 91.0	I: 3.9 80.0 5.9 I: 90.0 7.9 I:	V: 70.0 54 4.0 V: 29 6.0	l: 30 5.9 l: 15 7.9
V = v	HIGH VERY HIGH EXTREME	Value Range Index Range Value Range Index Range Choice Value Range Index Range Choice Value Range Index Range	1.2 4.0 V: 1.6 6.0 V: 1.8 2.1 8.0 V: >	1.5 5.9 1: 2.0 7.9 1: 7.0 2.8 9.0 1: 2.8	0.5 4.0 V: 0.46 0.29 6.0 V: 0.14 8.0 V:	0.30 5.9 1: 4.3 0.15 7.9 1: 0.05 9.0 1:	54 4.0 V: 32.2 29 6.0 V: 14 8.0	30 5.9 1: 5.7 15 7.9 1: 5 9.0	61.0 4.0 V: 81.0 6.0 V: 91.0	80.0 5.9 I: 90.0 7.9 I:	54 4.0 V : 29 6.0	30 5.9 I: 15 7.9
V = v	HIGH VERY HIGH EXTREME	Index Range Choice Value Range Index Range Value Range Index Range Choice Value Range Index Range	4.0 V: 1.6 6.0 V: 1.8 2.1 8.0 V: >	5.9 I: 2.0 7.9 I: 7.0 2.8 9.0 I: 2.8	4.0 V: 0.46 0.29 6.0 V: 0.14 8.0 V:	5.9 1: 4.3 0.15 7.9 1: 0.05 9.0 1:	4.0 V: 32.2 29 6.0 V: 14 8.0	5.9 1: 5.7 15 7.9 1: 5 9.0	4.0 V: 81.0 6.0 V: 91.0	5.9 I: 90.0 7.9 I:	4.0 V: 29 6.0	5.9 I: 15 7.9
V = v	HIGH VERY HIGH EXTREME	Choice Value Range Index Range Choice Value Range Index Range Value Range Index Range	V: <u>1.6</u> <u>6.0</u> V: <u>1.8</u> <u>2.1</u> <u>8.0</u> V: <u>></u>	I: 2.0 7.9 I: 7.0 2.8 9.0 I: 22.8 2.8 9.0	V: 0.46 0.29 6.0 V: 0.14 8.0 V:	I: 4.3 0.15 7.9 I: 0.05 9.0 I:	V: 32.2 29 6.0 V: 14 8.0	I: 5.7 15 7.9 I: 5 9.0	V: 81.0 6.0 V: 91.0	l: 90.0 7.9 I:	V: 29 6.0	l: 15 7.9
V = v	VERY HIGH EXTREME	Value Range Index Range Choice Value Range Index Range Choice Value Range Index Range	1.6 6.0 V: 1.8 2.1 8.0 V: >	2.0 7.9 1: 7.0 2.8 9.0 1: -2.8	0.29 6.0 V : 0.14 8.0 V :	0.15 7.9 I: 0.05 9.0 I:	29 6.0 V: 14 8.0	15 7.9 I: 5 9.0	81.0 6.0 V: 91.0	90.0 7.9 I:	29 6.0	15 7.9
V = v	VERY HIGH EXTREME	Index Range Choice Value Range Index Range Choice Value Range Index Range	6.0 V: 1.8 2.1 8.0 V:	7.9 1: 7.0 2.8 9.0 1: •2.8	6.0 V: 0.14 8.0 V:	7.9 I: 0.05 9.0 I:	6.0 V: 14 8.0	7.9 1: 5 9.0	6.0 V: 91.0	7.9 I:	6.0	7.9
V = v	VERY HIGH EXTREME	Choice Value Range Index Range Choice Value Range Index Range	V: 1.8 2.1 8.0 V:	I: 7.0 2.8 9.0 I:	V: 0.14 8.0 V:	l: 0.05 9.0 l:	V: 14 8.0	l: 5 9.0	V: 91.0	l:		
V = v	EXTREME	Value Range Index Range Choice Value Range Index Range	2.1 8.0 V:	2.8 9.0 I: •2.8	0.14 8.0 V :	0.05 9.0 I:	14 8.0	5 9.0	91.0		V:	1.
V = v	EXTREME	Index Range Choice Value Range Index Range	8.0 V:	9.0 I: •2.8	8.0 V:	9.0 I:	8.0	9.0		119.0		
V = v	EXTREME	Choice Value Range Index Range	V: >	l: •2.8	V:	l:					14	10
nk Mat		Value Range Index Range	>	2.8			V:		8.0	9.0	8.0	9.0
nk Mat		Index Range			<0	05		I:	V:	l:	V:	l:
nk Mat				10		.05	<	:5	>1	19	<`	0
nk Mat	value, I = index	Choice	V.	10	1	0	1	0	1	0	1	0
nk Mat	value, I = index		V:	l:	V:	l:	V: -TOTAL (l:	V:	I:	V:	1:
Boul Cobl Grav Sanc	Iders (Banks cor ble (Subtract 10	Inks have very low nposed of boulders points. If sand/grav nts depending perc ustment)	s have low t vel matrix g	oank erosion reater than 5	0% of bank			just)				
									BANK	MATERIAI	ADJUSTN	IENT
	tion Comments: stratified layers v											
atificat		nding on position c	functoble	lovoro in rolo	tion to bonk	full otogo						
Auu	5-10 points depe	nuing on position c				iun stage			STRA	TIFICATION	ADJUSTN	IENT
	VERY LOW	LOW		MODERATE		HIGH	١	VERY HIGH		EXTREME		
	5-9.9	10-19.9		20-29.9		30-39.9		40-45.9		46-50		

						veryrng	gh Rating					
Ba	ank Height (ft):		Bank	Height/	Root I	Depth/	R	oot	Bank	Angle	Sur	ace
	ankfull Height (ft):		Bank	cfull Ht	Bank	Height	Den	sity %	(Deg	rees)	Protec	ction%
		Value Range	1.0	1.1	1.0	0.9	100	80	0.0	20.0	100	80
	VERY LOW	Index Range	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9	1.0	1.9
		Choice	V:	l:	V:	l:	V:	l:	V:	I:	V:	I:
Г		Value Range	1.11	1.19	0.9	0.50	79	55	21.0	60.0	79	55
	LOW	Index Range	2.0	3.9	2.0 3.9	2.0 3.9	2.0	3.9	2.0	3.9		
LIA		Choice	V:	l:	V:	l:	V :	l:	V: 50.0	l: 3.4	V: 70.0	l: 3
		Value Range	1.2	1.5	0.5	0.30	54	30	61.0	80.0	54	30
5	MODERATE	Index Range	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9	4.0	5.9
		Choice	V:	l:	V:	l:	V :	l:	V:	l:	V:	l:
		Value Range	1.6	2.0	0.29	0.15	29	15	81.0	90.0	29	15
	HIGH	Index Range	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9	6.0	7.9
≤		Choice	V: 2.0	l: 7.9	V: 0.20	l: 7.2	V :	l:	V:	l:	V:	l:
		Value Range	2.1	2.8	0.14	0.05	14	5	91.0	119.0	14	10
	VERY HIGH	Index Range	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0
		Choice	V:	l:	V:	l:	V: 14.0	l: 8.0	V:	l:	V:	I:
		Value Range	>	2.8	<0	.05		<5	>1	19	<	10
	EXTREME	Index Range		10	1	0		10	1	0	1	0
		Choice	V:	l:	V:	l:	V:	l:	V:	l:	V:	I:
Be Bo Co Gr Sa	Materials edrock (Bedrock ba oulders (Banks con obble (Subtract 10) ravel (Add 5-10 poin and (Add 10 points) It Clay (+ 0: no adju	nposed of boulders points. If sand/grav nts depending perc	s have low b vel matrix gr	oank erosion reater than 5	0% of bank			djust)				
	cation Comments:								BAN	(MATERIA	L ADJUSTN	MENT
Fe ratifie	ew stratified layers v cation				tion to hank	full stage						
Fe ratifie		nding on position c	of unstable	layers in rela					STRA	TIFICATIO	N ADJUSTN	IENT
Fe ratifie	cation	nding on position o		layers in rela		HIGH		VERY HIGH		TIFICATIOI EXTREME	N ADJUSTN	IENT
Fe ratifie	cation dd 5-10 points depe							VERY HIGH 40-45.9			N ADJUSTN	IENT

NCDWQ Stream Forms

Date: February 10,2012	Project/Site: La	adder(T1-1)	Latitude:	Latitude:		
Evaluator: AH	County: Rowa	an	Longitude:			
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*		ination (circle one) ermittent Perennial	Other Enochville e.g. Quad Name:			
185		10/ c		<u></u>		
A. Geomorphology (Subtotal = 18.5)	Absent	Weak	Moderate	Strong		
1 ^a Continuity of channel bed and bank	0	1	2	3		
2. Sinuosity of channel along thalweg 3. In-channel structure: ex. riffle-pool, step-pool,	0	1	2	3		
ripple-pool sequence	0	(1)	2	3		
4. Particle size of stream substrate	0	1	2	(3)		
5. Active/relict floodplain	0	1	2	(3)		
6. Depositional bars or benches	0	1	2	3		
7. Recent alluvial deposits	0	1	(2)	3		
8. Headcuts	\odot	1	2	3		
9. Grade control	0	0.5	1	1.5		
10. Natural valley	0	(0.5)	1	1.5		
11. Second or greater order channel	No	o = 0	Yes(= 3)		
^a artificial ditches are not rated; see discussions in manual				178-1997)		
B. Hydrology (Subtotal = <u>5.5</u>)						
12. Presence of Baseflow	0	1	2	(3)		
13. Iron oxidizing bacteria	\bigcirc	1	2	3		
14. Leaf litter	(1.5)	1	0.5	0		
15. Sediment on plants or debris	$\overline{0}$	0.5	1	1.5		
16. Organic debris lines or piles	0	0.5	(1)	1.5		
17. Soil-based evidence of high water table?	No	<u>o</u> €0)	Yes	= 3		
C. Biology (Subtotal =)						
18. Fibrous roots in streambed	(3)	2	1	0		
19. Rooted upland plants in streambed	3	2	1	0		
20. Macrobenthos (note diversity and abundance)	0	(1)	2	3		
21. Aquatic Mollusks	(0)	1	2	3		
22. Fish	$\langle 0 \rangle$	0.5	1	1.5		
23. Crayfish	(0)	0.5	1	1.5		
24. Amphibians		0.5	1	1.5		
25. Algae	\bigcirc	0.5	1	1.5		
26. Wetland plants in streambed		FACW = 0.75; OB	_ = 1.5 Other = 0)		
*perennial streams may also be identified using other meth	ods. See p. 35 of manua	ıl.				
Notes:						
Sketch:						

Date: February 10,2012	Project/Site: Ladder (T1-2)	Latitude:
Evaluator: AH	County: Rowan	Longitude:
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determination (circle one) Ephemeral Intermittent Perennial	Other Enochville e.g. Quad Name:

A. Geomorphology (Subtotal = 19.5)	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank	0	1	2	(3)
2. Sinuosity of channel along thalweg	0	1	(2)	3
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	(2)	3
4. Particle size of stream substrate	0	1	2	(3)
5. Active/relict floodplain	0	1	2	
6. Depositional bars or benches	0	1	(2)	3
7. Recent alluvial deposits	0	(1)	2	3
8. Headcuts	\odot	1	2	3
9. Grade control	(0)	0.5	1	1.5
10. Natural valley	0	(0.5)	1	1.5
11. Second or greater order channel	No	o = 0	Yes	= 3)
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal =)				·····
12. Presence of Baseflow	0	1	2	3
13. Iron oxidizing bacteria		1	2	3
14. Leaf litter	(1.5)	1	0.5	0
15. Sediment on plants or debris	0	(0.5)	1	1.5
16. Organic debris lines or piles	(0)	0.5	1	1.5
17. Soil-based evidence of high water table?	No	> €0)	Yes	= 3
C. Biology (Subtotal =)				
18. Fibrous roots in streambed	3	2	1	0
19. Rooted upland plants in streambed	$\overline{(3)}$	2	1	0
20. Macrobenthos (note diversity and abundance)	0	(1)	2	3
21. Aquatic Mollusks	(0)	1	2	3
22. Fish	Image: Constraint of the second secon	0.5	1	1.5
23. Crayfish	(0)	0.5	1	1.5
24. Amphibians	\bigcirc	0.5	1	1.5
25. Algae	$\langle 0 \rangle$	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75;	OBL = 1.5 Other = ()
*perennial streams may also be identified using other metho	ods. See p. 35 of manua	l,		
Notes:				

Date: February 10,2012	Project/Site: Ladder(T1A-1)	Latitude:
Evaluator: AH	County: Rowan	Longitude:
Total Points: Stream is at least intermittent if \ge 19 or perennial if \ge 30*	Stream Determination (circle one) Ephemeral Intermittent Perennial	Other Enochville e.g. Quad Name:

A. Geomorphology (Subtotal = 245)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	1	2	3
2. Sinuosity of channel along thalweg	0	1	2	3
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	(2)	3
4. Particle size of stream substrate	0	1	2	(3)
5. Active/relict floodplain	0	1	2	(3)
6. Depositional bars or benches	0	1	2	(3)
7. Recent alluvial deposits	0	1	(2)	3
8. Headcuts	0	1	2	(3)
9. Grade control	\bigcirc	0.5	1	1.5
10. Natural valley	0	(0.5)	1	1.5
11. Second or greater order channel	No	= 0	Yes	= 3 >
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal =)				
12. Presence of Baseflow	0	1	2	(3)
13. Iron oxidizing bacteria	(0)	1	2	3
14. Leaf litter	(1.5)	1	0.5	0
15. Sediment on plants or debris	\bigcirc	0.5	1	1.5
16. Organic debris lines or piles	0	(0.5)	1	1.5
17. Soil-based evidence of high water table?	No	(= 0)	Yes	= 3
C. Biology (Subtotal =)				
18. Fibrous roots in streambed	3	2	1	0
19. Rooted upland plants in streambed	3	2	1	0
20. Macrobenthos (note diversity and abundance)	0	(1)	2	3
21. Aquatic Mollusks	(0)	1	2	3
22. Fish		0.5	1	1.5
23. Crayfish	\bigcirc	0.5	1	1.5
24. Amphibians		0.5	1	1.5
25. Algae	(0)	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75;	OBL = 1.5 Other =	0
*perennial streams may also be identified using other metho	ds. See p. 35 of manua			

Date: February 10,2012	Project/Site: Ladder(T1A-2)	Latitude:
Evaluator: AH	County: Rowan	Longitude:
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determination (circle one) Ephemeral Intermittent Perennial	Other Enochville e.g. Quad Name:

A. Geomorphology (Subtotal =)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	1	2	(3)
2. Sinuosity of channel along thalweg	0	1	(2)	3
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	(2)	3
4. Particle size of stream substrate	0	1	2	3
5. Active/relict floodplain	0	1	2	(3)
6. Depositional bars or benches	0	1	(2)	3
7. Recent alluvial deposits	0	$\widehat{(1)}$	2	3
8. Headcuts	(0)	1	2	3
9. Grade control		0.5	1	1.5
10. Natural valley	0	0.5	1	1.5
11. Second or greater order channel	Na	= 0	Yes	= 3)
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = <u> </u>				1. ¹⁰⁰⁰⁻¹⁰⁰ 10
12. Presence of Baseflow	0	1	2	(3)
13. Iron oxidizing bacteria	$\langle 0 \rangle$	1	2	3
14. Leaf litter	1.5		0.5	0
15. Sediment on plants or debris		0.5	1	1.5
16. Organic debris lines or piles	0	(0.5)	1	1.5
17. Soil-based evidence of high water table?	No	(= 0)	Yes	= 3
C. Biology (Subtotal =)				
18. Fibrous roots in streambed	(3)	2	1	0
19. Rooted upland plants in streambed	(3)	2	1	0
20. Macrobenthos (note diversity and abundance)	0	(1)	2	3
21. Aquatic Mollusks	(0)	1	2	3
22. Fish	(0)	0.5	1	1.5
23. Crayfish	\bigcirc	0.5	1	1.5
24. Amphibians	0	0.5	1	1.5
25. Algae	\bigcirc	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75;	OBL = 1.5 Other = 0)
*perennial streams may also be identified using other method	ds. See p. 35 of manua	l.		

Date: February 10,2012	Project/Site: Ladder(T1A-3)	Latitude:
Evaluator: AH	County: Rowan	Longitude:
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30*	Stream Determination (circle one) Ephemeral Intermittent Perennial	Other Enochville e.g. Quad Name:

A. Geomorphology (Subtotal = 100)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	1	2	(3)
2. Sinuosity of channel along thalweg	0	(1)	2	3
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3
4. Particle size of stream substrate	0	1	(2)	3
5. Active/relict floodplain	0	1	2	(3)
6. Depositional bars or benches	0	(1)	2	3
7. Recent alluvial deposits		1	2	3
8. Headcuts	0	1	2	(3)
9. Grade control	0	0.5	1	(1.5)
10. Natural valley	0	(0.5)	1	1.5
11. Second or greater order channel	No	= 0	Yes	= 3)
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal =)			-1	
12. Presence of Baseflow	0	1	2	3
13. Iron oxidizing bacteria	\bigcirc	1	2	3
14. Leaf litter	(1.5)	1	0.5	0
15. Sediment on plants or debris		0.5	1	1.5
16. Organic debris lines or piles	0	(0.5)	1	1.5
17. Soil-based evidence of high water table?	No	(= 0)	Yes	= 3
C. Biology (Subtotal =)				
18. Fibrous roots in streambed	(3)	2	1	0
19. Rooted upland plants in streambed	(3)	2	1	0
20. Macrobenthos (note diversity and abundance)	0	1	2	3
21. Aquatic Mollusks	0	1	2	3
22. Fish	(0)	0.5	1	1.5
23. Crayfish	(0)	0.5	1	1.5
24. Amphibians	(0)	0.5	1	1.5
25. Algae	(0)	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75;	OBL = 1.5 Other = 0	0
*perennial streams may also be identified using other method	ods. See p. 35 of manua	I.		

Date: February 10,2012	Project/Site: Ladder (T2-1)	Latitude:
Evaluator: AH	County: Rowan	Longitude:
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30*	Stream Determination (circle one) Ephemeral Intermittent Perennial	Other Enochville e.g. Quad Name:

A. Geomorphology (Subtotal = 23)	Absent	Weak	Moderate	Strong	
1 ^a Continuity of channel bed and bank	0	1	2	(3)	
2. Sinuosity of channel along thalweg	0	1	2	(35	
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3	
4. Particle size of stream substrate	0	1	2	(3)	
5. Active/relict floodplain	0	1	2	(3)	
6. Depositional bars or benches	0	1	2	(3)	
7. Recent alluvial deposits	0	1	(2)	3	
8. Headcuts	(0)	1	2	3	
9. Grade control	(0)	0.5	1	1.5	
10. Natural valley	0	0.5		1.5	
11. Second or greater order channel	No	o = 0	Yes	(= 3)	
^a artificial ditches are not rated; see discussions in manual					
B. Hydrology (Subtotal = <u>5.5</u>)	······································				
12. Presence of Baseflow	0	1	2	<u>(3)</u>	
13. Iron oxidizing bacteria	(0)	1	2	3	
14. Leaf litter	1.5	(1)	0.5	0	
15. Sediment on plants or debris	0	<u>(0.5)</u>	1	1.5	
16. Organic debris lines or piles	0	0.5		1.5	
17. Soil-based evidence of high water table?	No	o∈0)	Yes = 3		
C. Biology (Subtotal =)					
18. Fibrous roots in streambed	(3)	2	1	0	
19. Rooted upland plants in streambed	3	2	1	0	
20. Macrobenthos (note diversity and abundance)	0	(1)	2	3	
21. Aquatic Mollusks	(0)	1	2	3	
22. Fish	(D)	0.5	1	1.5	
23. Crayfish	\bigcirc	0.5	1	1.5	
24. Amphibians	(Ô)	0.5	1	1.5	
25. Algae		0.5	1	1.5	
26. Wetland plants in streambed		FACW = 0.75;	OBL = 1.5 Other =	0	
*perennial streams may also be identified using other method	ods. See p. 35 of manua	l.			

Date: February 10,2012	Project/Site: Ladder(T2-2)	Latitude:		
Evaluator: AH	County: Rowan	Longitude:		
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determination (circle one) Ephemeral Intermittent Perennial	Other Enochville e.g. Quad Name:		

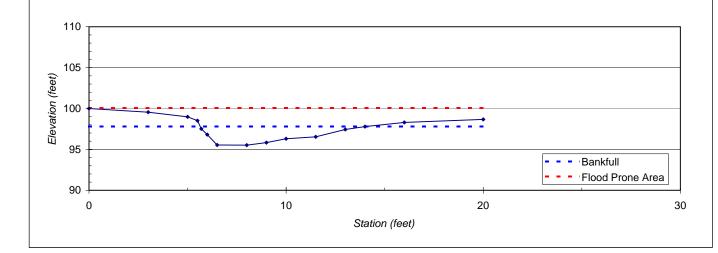
A. Geomorphology (Subtotal = 21.5)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	1	2	(3)
2. Sinuosity of channel along thalweg	0	1	(2)	3
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3
4. Particle size of stream substrate	0	1	2	(3)
5. Active/relict floodplain	1 0	1	2	(3)
6. Depositional bars or benches	0	1	(2)	3
7. Recent alluvial deposits	0	(1)	2	3
8. Headcuts	(0)	1	2	3
9. Grade control	0	0.5	1	(1.5)
10. Natural valley	0	0.5	(1)	1.5
11. Second or greater order channel	No	= 0	Yes	= 3)
a ^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = <u>5.5</u>)				
12. Presence of Baseflow	0	1	2	(3)
12. Presence of Baseflow		1	2	3
12. Presence of Baseflow 13. Iron oxidizing bacteria	(0)			1
12. Presence of Baseflow13. Iron oxidizing bacteria14. Leaf litter		1	2	3
 Presence of Baseflow Iron oxidizing bacteria Leaf litter Sediment on plants or debris 	(0) (1.5)	1	2 0.5	3
 Presence of Baseflow Iron oxidizing bacteria Leaf litter Sediment on plants or debris Organic debris lines or piles 	(0) (1.5) 0 0	1 1 (0.5)	2 0.5 1	3 0 1.5 1.5
 Presence of Baseflow Iron oxidizing bacteria Leaf litter Sediment on plants or debris Organic debris lines or piles Soil-based evidence of high water table? 	(0) (1.5) 0 0	1 1 (0.5) (0.5)	2 0.5 1 1	3 0 1.5 1.5
 Presence of Baseflow Iron oxidizing bacteria Leaf litter Sediment on plants or debris Organic debris lines or piles 	(0) (1.5) 0 0	1 1 (0.5) (0.5)	2 0.5 1 1	3 0 1.5 1.5
 12. Presence of Baseflow 13. Iron oxidizing bacteria 14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal =) 18. Fibrous roots in streambed 	0 (1.5) 0 0 No	$ \begin{array}{r} 1 \\ $	2 0.5 1 1 Yes	3 0 1.5 1.5 = 3
 12. Presence of Baseflow 13. Iron oxidizing bacteria 14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal =) 18. Fibrous roots in streambed 19. Rooted upland plants in streambed 	0 (1.5) 0 0 No	$ \begin{array}{r} 1 \\ 1 \\ $	2 0.5 1 1 Yes	3 0 1.5 1.5 = 3
 12. Presence of Baseflow 13. Iron oxidizing bacteria 14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal =) 18. Fibrous roots in streambed 	0 (1.5) 0 0 No 3 3 3	1 (0.5) (0.5) $= 0$ 2 2	2 0.5 1 1 Yes 1 1	3 0 1.5 1.5 = 3
 12. Presence of Baseflow 13. Iron oxidizing bacteria 14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal =) 18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 	0 (1.5) 0 0 No 3 3 0	1 (0.5) (0.5) $= 0$ 2 2 (1)	2 0.5 1 1 Yes 1 1 2	3 0 1.5 1.5 = 3 0 0 3
 12. Presence of Baseflow 13. Iron oxidizing bacteria 14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal =) 18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 	0 (1.5) 0 0 No 0 No 0 0 0 0	1 (0.5)	2 0.5 1 1 Yes 1 1 2 2	3 0 1.5 1.5 = 3 0 0 0 3 3 3
 Presence of Baseflow Iron oxidizing bacteria Leaf litter Sediment on plants or debris Organic debris lines or piles Soil-based evidence of high water table? Biology (Subtotal =) Fibrous roots in streambed Rooted upland plants in streambed Nacrobenthos (note diversity and abundance) Aquatic Mollusks Fish Crayfish 	0 (1.5) 0 0 No 0 No 0 0 0 0 0 0	$ \begin{array}{r} 1 \\ 1 \\ $	2 0.5 1 1 Yes 1 1 2 2 1	3 0 1.5 1.5 = 3 0 0 0 3 3 1.5
 12. Presence of Baseflow 13. Iron oxidizing bacteria 14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal =) 18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish 	0 (1.5) 0 0 No No 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{r} 1 \\ 1 \\ $	2 0.5 1 1 Yes 1 2 2 1 1 1	3 0 1.5 1.5 = 3 0 0 0 3 3 3 , 1.5 1.5

Reference Reach Data

UT to Fisher River Reference Site

River Basin:			Yadkin		
Natershed:			UT to Fisher River		
KS ID			XS#1 Riffle		
Drainage Are	ea (sq mi):		0.38		
Date:			6/9/2005		
Field Crew:			G. Mryncza, A. Spiller		
			· · · · · · · · · · · · · · · · · · ·		
Station	Rod Ht.	Elevation	SUMMARY DATA		
0.0	2.22	100.00	Bankfull Elevation:	98.22	
3.0	2.15	100.07	Bankfull Cross-Sectional Area:	10.40	
5.0	2.50	99.72	Bankfull Width:	10.00	
7.0	2.98	99.24	Flood Prone Area Elevation:	99.47	
8.0	3.49	98.73	Flood Prone Width:	13.10	
8.8	4.00	98.22	Max Depth at Bankfull:	1.25	
9.0	4.96	97.26	Mean Depth at Bankfull:	1.04	
12.0	5.03	97.19	W / D Ratio:	9.6	
14.0	5.25	96.97	Entrenchment Ratio:	1.30	Les Presenter Aler
16.0	5.16	97.06	Bank Height Ratio:	2.08	
17.0	5.20	97.02	Slope (ft/ft):	0.013	
18.0	5.06	97.16	Discharge (cfs)	42	Stream Type: B4c
18.7	4.00	98.22	gt (tra)		
19.5	2.65	99.57			
20.0	1.66	100.56	1 v	adkin River	Basin, UT to Fisher River, XS#1 Riffle
			110 105 100 95 90		Bankfull
			0	10	20 30 Station (feet)

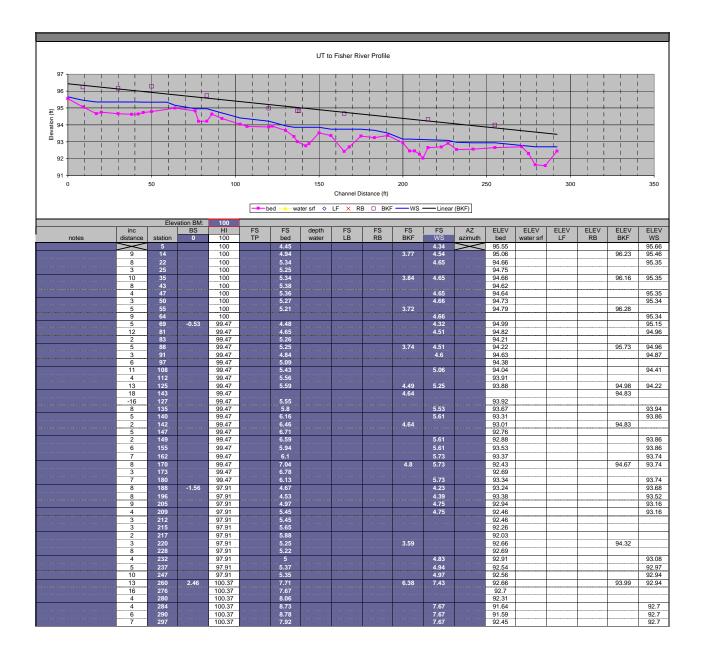
Material	Size Range	(mm)	Count		UT to Fsher	River							
silt/clay	0	0.062	0		Surry Count	y, NC							
very fine sand	0.062	0.13	0		Riffle #1 (St	-							
fine sand	0.13	0.25	0	Note									
medium sand		0.5	0		-								
coarse sand	0.5	1	5										
very coarse sand	1	2	8	100%						╺			25
very fine gravel	2	4	21	90%									
fine gravel		6	9	9070					F				
fine gravel	6	8	8	80%									20
medium gravel		11	11	\$ 70%									
medium gravel		16	6	10%				1111					Ξ
coarse gravel		22	7	ue 70%						ii i			15 number
coarse gravel		32	2	tt fü			iii i i						ber o
very coarse gravel		45	9	50%			i i i						of particles 10
very coarse gravel	45	64	6	a 40%	1 1 1 1 1 1 1			I					10 arti
small cobble	64	90	5	1070									cles
medium cobble	90	128	2	30%									
large cobble		180	1	20%									F
very large cobble		256	0	20%								1 1 1 1 1 1	5
small boulder	256	362	0	10%									
small boulder	362	512	0										
medium boulder		1024	0	0%				╶┛╌┛╌┛╌┦		┺┼╴┛╌╴╸	<u></u>		0
large boulder		2048	0	0.01	0.1		1	10		100	1000	1000	00
very large boulder		4096	0					particle size	(mm)	[
	total par	icle count:	100								lative %	# of particles	
bedrock				based on		size per	cent less th	an (mm)			partic	le size distri	bution
clay hardpan				sediment	D16	D35	D50	D65	D84	D95	gradation	geo mean	std de
detritus/wood				particles only	2.208	4.18	7.7	13	42	79	4.5	9.6	4.3
artificial				based on	1		t by substra				<u>.</u>		
	t	otal count:	100	total count	silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artific
					0%	13%	79%	8%	0%	0%	0%	0%	0%


Vatershed: KS ID Drainage Area (sq mi): Date: Field Crew:		UT to Fisher River		
Drainage Area (sq mi): Date:				
Date:		XS#2 Pool		
		0.38		A STATE AND A STATE AN
ield Crew		6/9/2005		
		G. Mryncza, A. Spiller		
Station Rod Ht.	Elevation	SUMMARY DATA		
0.0 2.68	100.00	Bankfull Elevation:	98.12	
3.0 2.94	99.74	Bankfull Cross-Sectional Area:	13.40	
5.0 3.61	99.07	Bankfull Width:	11.62	and the second
6.0 4.10	98.58	Flood Prone Area Elevation:	100.15	the second se
6.8 4.56	98.12	Flood Prone Width:		Providence of the second se
7.0 4.70	97.98	Max Depth at Bankfull:	2.03	
9.0 4.94	97.74	Mean Depth at Bankfull:	1.15	
11.0 5.21	97.47	W / D Ratio:	10.1	
12.0 5.64	97.04	Entrenchment Ratio:		
13.0 6.00	96.68	Bank Height Ratio:	0.81	and the state of the
15.0 6.59	96.09	Slope (ft/ft):	0.001	
17.0 6.42	96.26	Discharge (cfs)	56	Stream Type: B4c
18.0 6.50	96.18			
18.2 4.93	97.75			
19.0 3.56	99.12		Yadkin Rive	Basin, UT to Fisher River, XS#2 Pool
20.0 2.80	99.88			
		110 105 (teet) 100 95		· Bankfull · Flood Prone Area
		90	10	20 30 Station (feet)

Yadkin
UT to Fisher River
XS#3 Pool
0.38
6/9/2005
G. Mryncza, A. Spiller

Station	Rod Ht.	Elevation
0.0	1.33	100.00
3.0	1.78	99.55
5.0	2.35	98.98
5.5	2.82	98.51
5.7	3.81	97.52
6.0	4.52	96.81
6.5	5.79	95.54
8.0	5.82	95.51
9.0	5.50	95.83
10.0	5.02	96.31
11.5	4.80	96.53
13.0	3.90	97.43
14.0	3.55	97.78
16.0	3.03	98.30
20.0	2.66	98.67

SUMMARY DATA	
Bankfull Elevation:	97.78
Bankfull Cross-Sectional Area:	11.60
Bankfull Width:	8.35
Flood Prone Area Elevation:	100.05
Flood Prone Width:	
Max Depth at Bankfull:	2.27
Mean Depth at Bankfull:	1.39
W / D Ratio:	6.0
Entrenchment Ratio:	
Bank Height Ratio:	0.85
Slope (ft/ft):	0.001
Discharge (cfs)	52

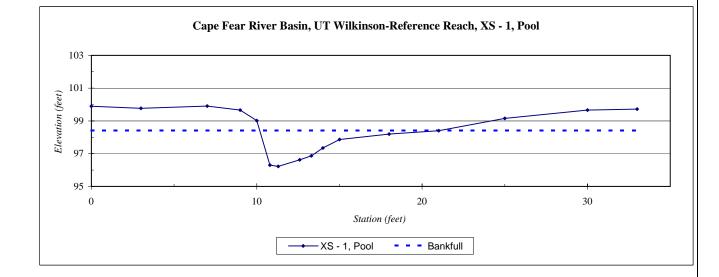


Yadkin River Basin, UT to Fisher River, XS#3 Pool

Alatanalar	:		Yadkin		
Vatershed:			UT to Fisher River		
(S ID			XS#4 Riffle		
	ea (sq mi):		0.38		
Date:			6/9/2005		
ield Crew:			G. Mryncza, A. Spiller		
					- CARLES - CARDING - CARDING - CARDING
Station	Rod Ht.	Elevation	SUMMARY DATA		
0.0	4.62	100.00	Bankfull Elevation:	98.28	
3.0	5.54	99.08	Bankfull Cross-Sectional Area:	10.70	
7.0	6.01	98.61	Bankfull Width:	9.00	
8.5	6.34	98.28	Flood Prone Area Elevation:	99.73	
9.0	7.04	97.58	Flood Prone Width:	20.50	
9.5	7.66	96.96	Max Depth at Bankfull:	1.45	
11.0	7.67	96.95	Mean Depth at Bankfull:	1.19	
12.0	7.79	96.83	W / D Ratio:	7.6	
14.0	7.58	97.04	Entrenchment Ratio:	2.30	the second s
16.0	7.57	97.05	Bank Height Ratio:	1.00	The second s
17.0	7.51	97.11	Slope (ft/ft):	0.013	
17.5	6.34	98.28	Discharge (cfs)	46	Stream Type: B4c
19.0	5.90	98.72			
21.0	5.06	99.56			
	5.06 4.37		· · · · · · · · · · · · · · · · · · ·	řadkin River	r Basin, UT to Fisher River, XS#4 Riffle
21.0		99.56		Yadkin River	
21.0		99.56		Yadkin River	r Basin, UT to Fisher River, XS#4 Riffle
21.0		99.56		Yadkin River	Bankfull

ebble Count	Cine Demos	(Count		UT to Dalars	Dimm							
Material silt/clay	Size Range	0.062	Count 1		UT to Fsher Surry Count								
very fine sand		0.13	0		Riffle #2 (St	a. 02+55)							
fine sand		0.25	0	Note	:								
medium sand		0.5	0										
coarse sand	0.5	1	8	100%							_		18
very coarse sand	1	2	10	100/0								1 I I I I I I I	10
very fine gravel		4	16	90%									16
fine gravel		6	16	800/				<u> </u>					
fine gravel		8	10	80%									14
medium gravel		11 16	12 12	§ 70%									10
medium gravel		22	<u>12</u> 7	r th									¹² g
coarse gravel coarse gravel		32	4	up 70% in 60% in 50%				7					12 number of particles 6
very coarse gravel		45	<u>4</u> 3	50%									fo r of
very coarse gravel		4J 64	0	Derc								_	8 par
small cobble		90	1	× 40%									ticle
medium cobble		128	0	30%				/					6 ³⁶
large cobble		180	0	5070									4
very large cobble		256	0	20%	1 1 1 1 1 1 1		╞┼╢───┛╟──┼						4
small boulder		362	0	10%									2
small boulder	362	512	0	1070						I I I			-
medium boulder		1024	0	0%						└┛┼╼╶╼└╼└╼			0
large boulder	1024	2048	0	0.01	0.1		1	10		100	1000	1000	00
very large boulder	2048	4096	0					particle size ((mm)				
	total par	ticle count:	100								lative %	# of particles	
bedrock				based on		size per	cent less th	an (mm)			partic	le size distri	bution
clay hardpan	1			sediment	D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood				particles only	1.625	4.00	5.8	9	16	29	3.1	5.0	3.1
artificial				based on		percen	t by substra	ate type			•		
	t	total count:	100	total count	silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificia
					1%	18%	80%	1%	0%	0%	0%	0%	0%

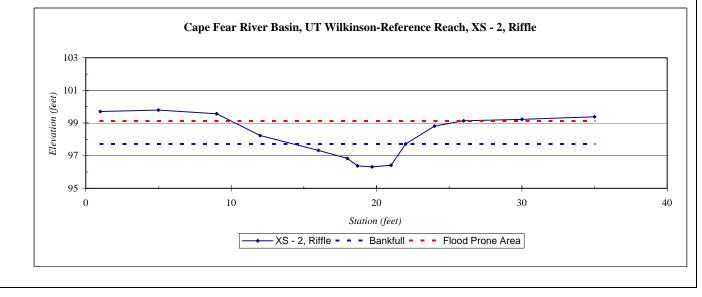
Pebble Count													
Material	Size Range (mm)		Count		UT to Fsher	River							
silt/clay	0	0.062	0		Surry Count	y, NC							
very fine sand	0.062	0.13	0										
fine sand	0.13	0.25	0	Note:	Reach Pebb	le Count							
medium sand	0.25	0.5	2										
coarse sand	0.5	1	7										
very coarse sand	1	2	15	100%									16
very fine gravel	2	4	13	90%	1 1 1 1 1 1 1	i i i i i		i i i i i i i i i i i i i i i i i i i					
fine gravel	4	6	9	20/0			iii i						14
fine gravel	6	8	10	80%									
medium gravel	8	11	9	s 70%					7				12
medium gravel	11	16	5	100%									=
coarse gravel	16	22	7	ja 60%				<i>/</i> _					10 number
coarse gravel	22	32	6	ut fü									Der
very coarse gravel	32	45	7	50%									of particles 6
very coarse gravel	45	64	6	ä 40%			i i i						arti
small cobble	64	90	4	1070									6 Cles
medium cobble	90	128	0	30%									
large cobble	128	180	0	2004									4
very large cobble	180	256	0	20%									
small boulder	256	362	0	10%								<u> </u>	2
small boulder	362	512	0										
medium boulder	512	1024	0	0%				╶┛╌╝╌║╌╢		•		••	0
large boulder	1024	2048		0.01	0.1		1	10		100	1000	1000	00
very large boulder			0					particle size ((mm)		··· • • -	и с. <i>с</i> . 1	
	total part	icle count:	100								ative %	# of particles	
bedrock				based on		size per	cent less th	an (mm)			partic	le size distri	bution
clay hardpan				sediment	D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood				particles only	1.382	3.60	6.7	11	34	60	4.9	6.8	4.9
artificial				based on		percen	t by substra	ate type					
I	t	otal count:	100	total count	silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificial
					0%	24%	72%	4%	0%	0%	0%	0%	0%


UT to Wilkinson Creek Reference Site

River Basin:	Cape Fear
Watershed:	UT Wilkinson-Reference Reach
XS ID	XS - 1, Pool
Drainage Area (sq mi):	0.145
Date:	5/9/2006
Field Crew:	A. Helms, A. French

Station	Elevation
0	99.89
3	99.77
7	99.90
9	99.66
10	99.01
10.8	96.30
11.3	96.22
12.6	96.62
13.3	96.87
14	97.34
15	97.86
18	98.19
21	98.40
25	99.15
30	99.66
33	99.72

SUMMARY DATA	
Bankfull Elevation:	98.4
Bankfull Cross-Sectional Area:	8.6
Bankfull Width:	10.8
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.2
Mean Depth at Bankfull:	0.8
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-
Water Surface Slope (ft/ft):	0.018



River Basin:	Cape Fear
Watershed:	UT Wilkinson-Reference Reach
XS ID	XS - 2, Riffle
Drainage Area (sq mi):	0.145
Date:	5/9/2006
Field Crew:	A. Helms, A. French

Station	Elevation
1	99.70
5	99.80
9	99.57
12	98.23
16	97.33
18	96.84
18.7	96.37
19.7	96.32
21	96.41
22	97.72
24	98.81
26	99.13
30	99.22
35	99.38

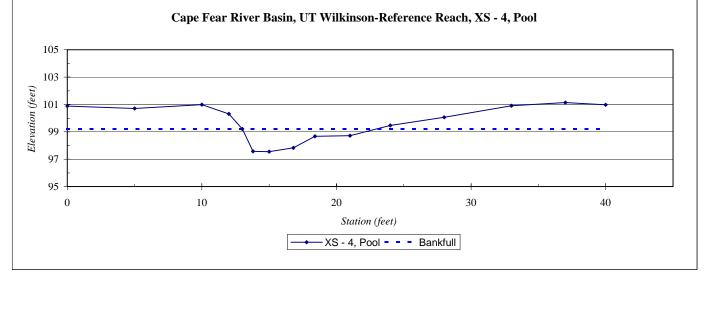
SUMMARY DATA	
Bankfull Elevation:	97.7
Bankfull Cross-Sectional Area:	6.2
Bankfull Width:	7.7
Flood Prone Area Elevation:	99.1
Flood Prone Width:	16.0
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.8
W / D Ratio:	9.6
Entrenchment Ratio:	2.1
Bank Height Ratio:	2.0
Water Surface Slope (ft/ft):	0.018



River Basin:	Cape Fear
Watershed:	UT Wilkinson-Reference Reach
XS ID	XS - 3, Riffle
Drainage Area (sq mi):	0.145
Date:	5/9/2006
Field Crew:	A. Helms, A. French

Station	Elevation
0	100.47
5	100.60
10	100.82
14	100.61
16	100.09
17	99.36
18	97.56
18.7	97.67
19.7	97.64
20.7	97.63
22	97.83
23.2	98.10
25	98.86
27	99.35
29	99.59
32	100.32
35	100.97
39	101.20

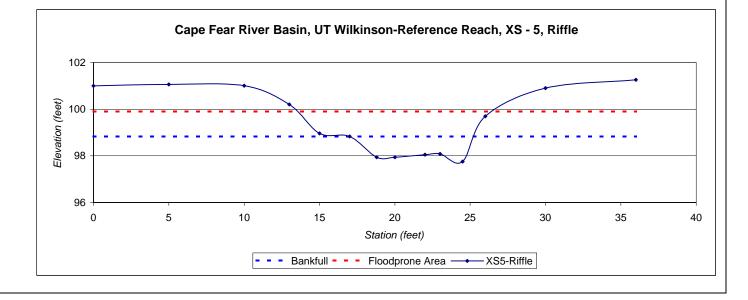
SUMMARY DATA	
Bankfull Elevation:	98.9
Bankfull Cross-Sectional Area:	7.0
Bankfull Width:	7.7
Flood Prone Area Elevation:	100.2
Flood Prone Width:	16.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.9
W / D Ratio:	8.5
Entrenchment Ratio:	2.1
Bank Height Ratio:	2.3
Water Surface Slope (ft/ft):	0.018

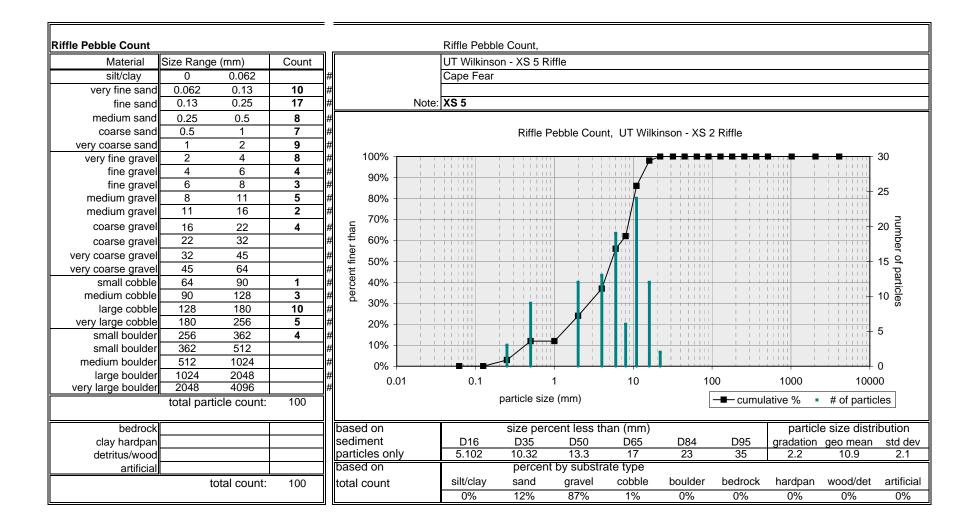

Riffle Pebble Count														
Material	Size Range	e (mm)	Count			UT Wilkins	on - XS 3 R	iffle						
silt/clay	0	0.062	3			Cape Fear								
very fine sand	0.062	0.13	1											
fine sand	0.13	0.25	4		Note:	XS 3								
medium sand	0.25	0.5												
coarse sand	0.5	1	1				Riffle F	Pebble Cour	nt, UT Wilki	nson - XS 2	2 Riffle			
very coarse sand	1	2												
very fine gravel	2	4	10	100% -										30
fine gravel	4	6	10	90% -		1.1.1.11	<u> </u>	i i i i	<u> </u>		<u> </u>	<u>i i i i i i i i i i i i i i i i i i i </u>		
fine gravel	6	8	7											25
medium gravel	8	11	22	80% -										20
medium gravel	11	16	22	- 70% -		1 1 1 1 1 1	1 1 1 1 1 1 1						1 1 1 1 1 1 1	
coarse gravel	16	22	16	lar										20 number
coarse gravel	22	32	4	는 60% -										ıbe
very coarse gravel	32	45		- 50% -										
very coarse gravel	45	64		t 50%										15 of particle 10
small cobble	64	90		පී 40% -										arti
medium cobble	90	128		<u>8</u> 30% -		1 1 1 1 1 1	1 1 1 1 1 1 1							10 g
large cobble	128	180		30% -			1 1 1 111		1 111 1					0
very large cobble	180	256		20% -								1		-
small boulder	256	362		1.00/										5
small boulder	362	512		10% -	· · ·									
medium boulder	512	1024		0% -			-							0
large boulder	1024	2048		0.	01	0.1		1	10	1(00	1000	1000	00
very large boulder	2048	4096	400				particle siz	o (mm)						
	total par	ticle count:	100				particle SIZ					ative %	 # of partic 	ies
bedrock				based on			size per	cent less th	nan (mm)			partic	le size distr	ibution
clay hardpan				sediment		D16	D35	D50	D65	D84	D95		geo mean	
detritus/wood				particles on	ly	5.102	10.32	13.3	17	23	35	2.2	10.9	2.1
artificial				based on			percen	t by substra	ate type					
	t	total count:	100	total count		silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificial
						0%	12%	87%	1%	0%	0%	0%	0%	0%

River Basin:	Cape Fear
Watershed:	UT Wilkinson-Reference Reach
XS ID	XS - 4, Pool
Drainage Area (sq mi):	0.145
Date:	5/9/2006
Field Crew:	A. Helms, A. French

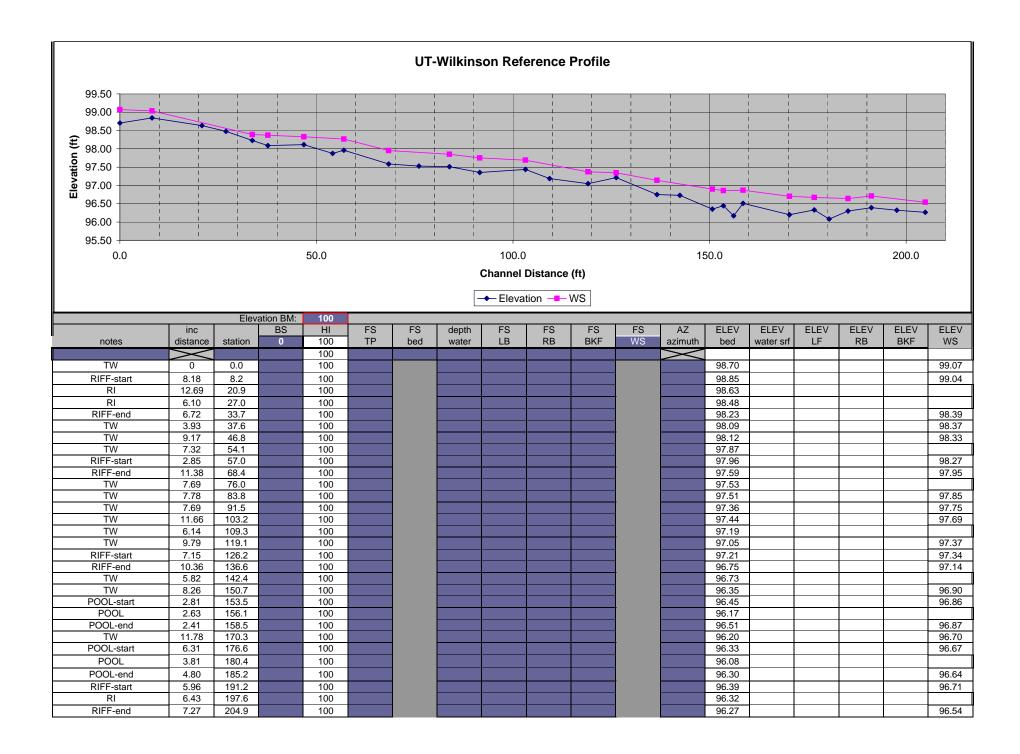
Station	Elevation
0	100.88
5	100.71
10	100.98
12	100.31
13	99.22
13.8	97.58
15	97.55
16.8	97.84
18.4	98.67
21	98.72
24	99.47
28	100.07
33	100.90
37	101.15
40	100.98

SUMMARY DATA	
Bankfull Elevation:	99.2
Bankfull Cross-Sectional Area:	8.8
Bankfull Width:	10.0
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	0.9
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-
Water Surface Slope (ft/ft):	0.018




River Basin:	Cape Fear
Watershed:	UT Wilkinson-Reference Reach
XS ID	XS - 5, Riffle
Drainage Area (sq mi):	0.145
Date:	5/9/2006
Field Crew:	A. Helms, A. French

Station	Elevation
0.00	101.00
5.00	101.06
10.00	101.01
13.00	100.20
15.00	98.96
17.00	98.83
18.80	97.94
20.00	97.94
22.00	98.05
23.00	98.08
24.50	97.75
26.00	99.70
30.00	100.90
36.00	101.26


SUMMARY DATA	
Bankfull Elevation:	98.8
Bankfull Cross-Sectional Area:	6.1
Bankfull Width:	8.3
Flood Prone Area Elevation:	99.9
Flood Prone Width:	13.0
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.7
W / D Ratio:	11.4
Entrenchment Ratio:	1.6
Bank Height Ratio:	2.7
Water Surface Slope (ft/ft):	0.018

oble Count of Cha	nnel Reac	h						Pebble Cou								
Material	Size Rang	e (mm)	Count]]				UT Wilkinse	on - Reac	า						
silt/clay	0	0.062	6	##				Cape Fear								
very fine sand	0.062	0.13	8	##												
fine sand	0.13	0.25	12	##			Note:	Reach								
medium sand	0.25	0.5	15	##												
coarse sand	0.5	1	4	##		100% -			P	ebble Cour	nt, UT Will	kinson - Rea	ach _			10
very coarse sand	1	2	6	##		100% 7										18
very fine gravel	2	4	3	##		90% -	I					╼╼╼╼		1		16
fine gravel	4	6	2	##			i i							1 1 1 1 1 1		
fine gravel	6	8	2	##	_	80% -		1 1 1 1 1 1 1		111 1 1	· · · · · · · · · /			1 1 1 1 1 1		14
medium gravel	8	11	16	##	percent finer than	70% -	1		1 1 1							-
medium gravel	11	16	8	##	r th	, 0,0	1				/					12 number
coarse gravel	16	22	6	##	ine	60% -	I									nbe
coarse gravel	22	32	2	##	nt f	500/	i	i i i i i i i i i i i i i i i i i i i					ii i i	1 1 1 1 1		10 ≌ ⊆
very coarse gravel	32	45		##	Cel	50% -	1		1 1 1					1 1 1 1 1 1		
very coarse gravel	45	64	3	##	per	40% -			jr					· · · · · · · · · · · · · · · · · · ·		o arti
small cobble	64	90	1	##			1									particles
medium cobble	90	128	-	## ##		30% -				111						° Ö
large cobble	128	180	4	## ##		20% -	1	1 1 1 111		iii i		1 1 1 1 1 1	ii <u>i</u> ii	1 1 1 1 1 1		4
very large cobble	180 256	256 362	2	## ##		2070	1									
small boulder small boulder	362	512		##		10% -	 			111 1						2
medium boulder	502	1024		##		0% -	1									0
large boulder	1024	2048		##				0.1		4	40		100	1000	400	0
very large boulder	2048	4096		##		0.0	JI	0.1		1	10		100	1000	100	UU
	total partie		100							þ	oarticle size	e (mm) [— ■ — cumu	lative %	# of parti	cles
bedrock				1	based	on			size per	cent less th	han (mm)			particl	e size distri	ibution
clay hardpan					sedim	ent		D16	D35	D50	D65	D84	D95		geo mean	
detritus/wood				1	particl	es only		0.140	0.38	1.8	9	18	139	11.3	1.6	11.3
artificial				- 1	based					by substr						
	to	tal count:	100		total c			silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artific
								6%	45%	42%	7%	0%	0%	0%	0%	0%

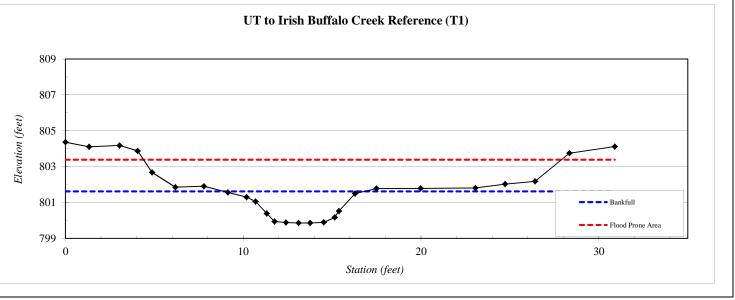
Reference Reach UT to Wilkinson

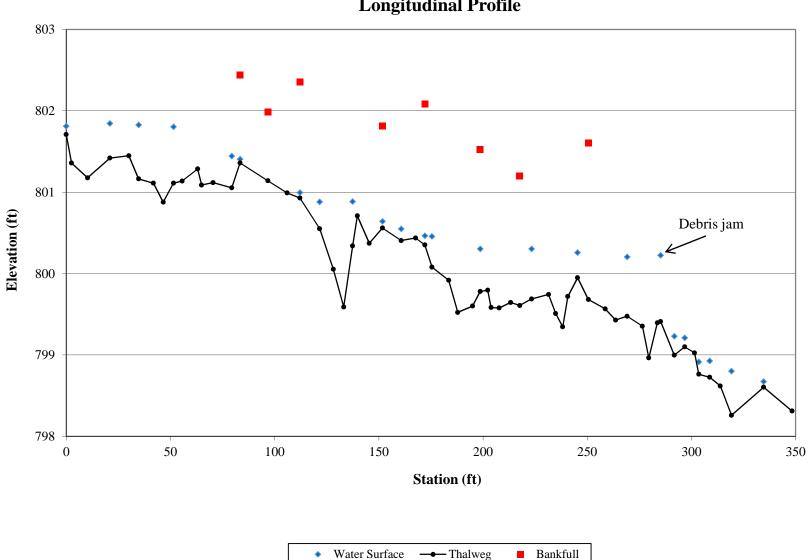
01.JPG

02 JPG

03.JFG

04.JFG


UT to Irish Buffalo Creek Reference Site


River Basin:	Yadkin-PeeDee
Watershed:	Irish Buffalo Creek, T1
XS ID	XS-Riffle (REFERENCE)
Drainage Area (sq mi):	0.16
Date:	2/17/2012
Field Crew:	A. French, K. O'Briant

Station	Elevation
0.0	804.36
1.3	804.11
3.0	804.18
4.1	803.88
4.9	802.68
6.2	801.85
7.8	801.91
9.1	801.56
10.2	801.30
10.7	801.05
11.3	800.38
11.8	799.94
12.4	799.89
13.1	799.86
13.8	799.86
14.5	799.89
15.2	800.17
15.4	800.52
16.3	801.50
17.5	801.77
20.0	801.79
23.1	801.81
24.7	802.02
26.4	802.18
28.3	803.75
28.3	804.12

SUMMARY DATA	
Bankfull Elevation:	801.6
Bankfull Cross-Sectional Area:	8.4
Bankfull Width:	8.0
Flood Prone Area Elevation:	803.4
Flood Prone Width:	23
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	1.1
W / D Ratio:	7.6
Entrenchment Ratio:	2.9
Bank Height Ratio:	1.0

UT to Irish Buffalo Creek Reference Reach (T1) Longitudinal Profile

UT to Irish Buffalo Creek Reference Stream Photos

Looking downstream on reference reach. 2-17-2012

Looking downstream on reference reach. 2-17-2012

Looking downstream on reference reach. 2-17-2012

Morphological Design Criteria

Morpho	logical	Design	Criteria
THU PHU	i ogicai	2 Coign	CI III III

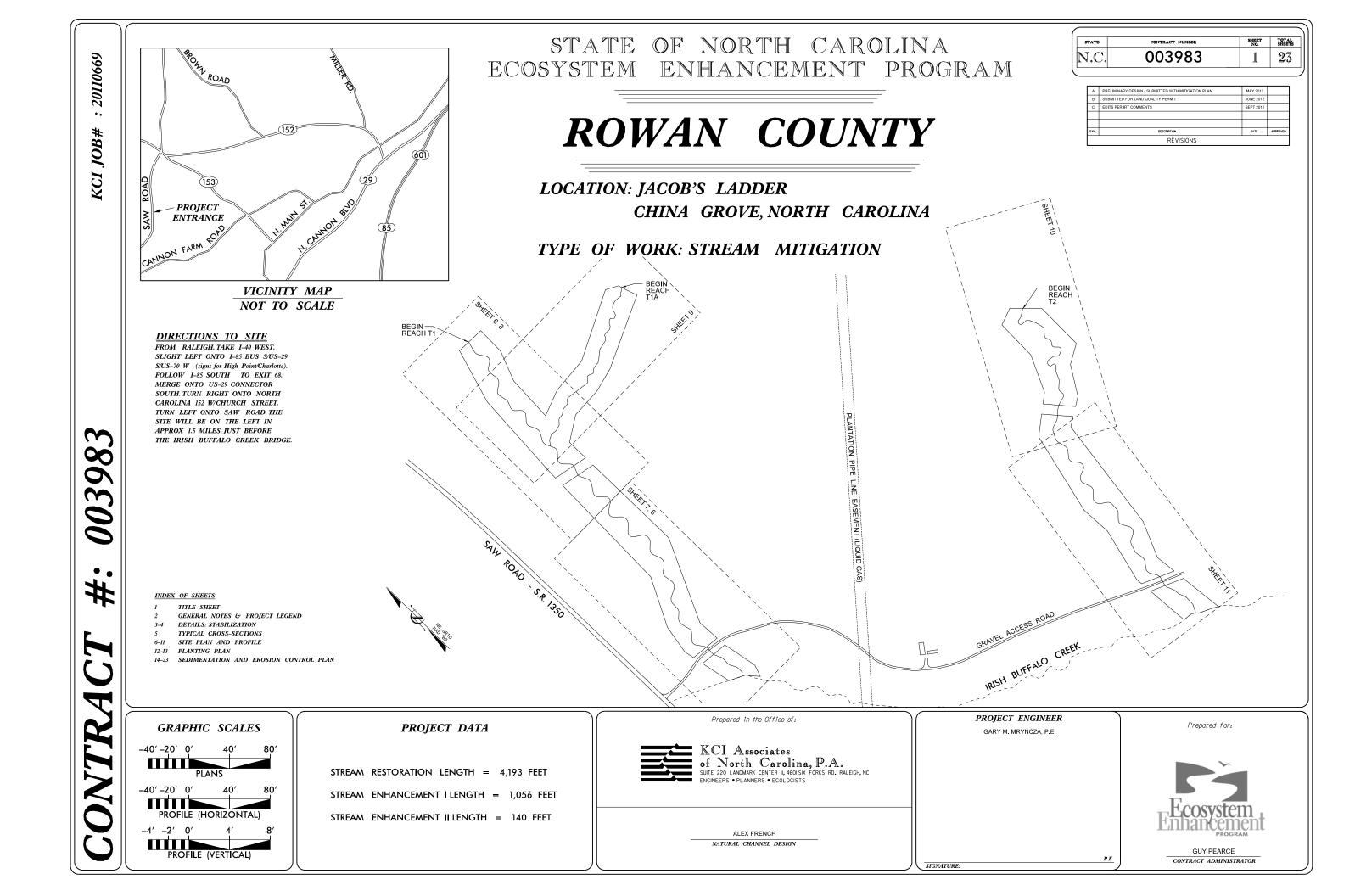
Variables		Existing	Existing	Existing	Ref. Reach UT to Irish	Proposed	Proposed	Proposed	Proposed	
			T2-1	T2-2	Buffalo	T1-1	T1-2	T2-1	T2-2	
Rosge	n Stream Type	G4	G4	G4	E4	C4	C4	C4	C4	
Mitig	ation Type	Restoration	Enh.I	Restoration	N/A	Restoration	Restoration	Enh.I	Restoration	
Drain	age Area (mi ²)	0.21, 0.36	0.67	0.70	0.16	0.21	0.36	0.67	0.70	
Bankf	ull Width (W _{bkf}) (ft)	6.7-9.6	10.6-16.5	10.8	6.9	10.3	11.5	13.5	13.5	
	ull Mean Depth (d _{bkf}) (ft)	1.1-1.5	1.2-1.7	2.3	1.1	0.9	1.0	1.1	1.1	
	ull Cross-Sectional area (A _{bkf}) (ft ²)	9.8-10.5	18.5-20.6	25	7.4	9.0	11.0	15.3	15.3	
	/depth Ratio (W _{bkf} /d _{bkf})	4.6-8.8	6.1-13.2	4.7	6.4	12.0	12.0	12.0	12.0	
	num Depth (d_{mbkf}) (ft)	1.7-2.4	2.1-2.6	3.4	1.6	1.4	1.5	1.8	1.8	
Width	of flood prone area (W _{fpa}) (ft)	12-16	20-35	16	23	23-70	26-70	30	30-70	
Entrei	nchment Ratio (ER)	1.3-2.2	1.9-2.1	1.5	3.4	2.2-6.0	2.2-6.0	2.2	2.2-5.2	
Sinuo	sity (stream length/valley length) (K)	1.03	1.47	1.00	1.18	1.14	1.18	1.45	1.16	
	Pool Depth (ft)	1.5	1.2	*	1.6	1.3	1.4	1.5	1.6	
	Riffle Mean Depth (ft)	1.1-1.5	1.2-1.7	2.3	1.1	0.9	1.0	1.1	1.1	
	Max Pool Depth (ft)	2.4	2.1	*	2.7	2.6	2.8	3.1	3.2	
	Pool Width (ft)	6.7	16.5	*	**	15.0	15.0	18.0	18.0	
	Riffle Width (ft)	6.7-9.6	10.6-16.5	10.8	6.9	10.3	11.5	13.5	13.5	
и	Pool XS Area (sf)	9.8	20.6	*	**	19.5	20.6	27.5	28.4	
Dimension	Riffle XS Area (sf)	9.8-10.5	18.5-20.6	25	7.4	9.0	11.0	15.3	15.3	
imei	Pool depth/mean riffle depth	0-1.0	0-0.7	*	**	1.4	1.4	1.4	1.4	
Õ	Pool width/riffle width	0.7-1.0	1.0-1.6	*	**	1.5	1.3	1.3	1.3	
	Pool area/riffle area	0.9-1.0	1.0-1.1	*	**	2.2	1.9	1.8	1.9	
	Max pool depth/d _{bkf}	0-1.6	0-1.2	*	**	2.9	2.8	2.8	2.9	
	Bank Height Ratio (BHR)	2.3-3.3	1.9-2.0	2.0	1.0	1.0	1.0	1.0	1.0	
	Mean Bankfull Velocity (V) (fps)	4.3-4.6	3.2-3.7	2.8	3.3	3.4	4	4.1	4.5	
	Bankfull Discharge (Q) (cfs)	44.7-45.0	65.7-68.2	71.3	24.7	30.5	44.3	62.9	68.6	
	Meander length (L_m) (ft)	*	23-150	*	43 - 102	65-120	65-140	58-100	70-140	
	Radius of curvature (R _c) (ft)	*	5-15	*	12 - 25	20-40	23-45	20-50	27-54	
ern	Belt width (W _{blt}) (ft)	*	20-60	*	14 - 38	25-60	30-70	20-60	30-70	
Pattern	Meander width ratio (W _{blt} /W _{bkf})	*	1.8-5.8	*	2.0 - 5.5	2.4-5.8	2.6-5.7	2.2-5.2	2.2-5.2	
1	Radius of curvature/bankfull width	*	0.5-1.4	*	1.7-3.6	2-4	2-4	2-4	2-4	
	Meander length/bankfull width	*	2.2-14.1	*	6.2 - 14.8	6.3-11.7	5.7-12.2	4.3-7.4	5.2-10.4	
	Valley slope	0.010	0.011	0.008	0.009	0.005	0.013	0.009	0.014	
	Average water surface slope	0.011	0.006	0.013	0.007	0.004	0.011	0.007	0.012	
	Riffle slope	0.010-0.035	0.004-0.008	0.004-0.018	0.011-0.025	0.004-0.017	0.014-0.017	0.006-0.014	0.005-0.017	
	Pool slope	*	*	*	0.001-0.007	0.000-0.001	0.000-0.001	0.000-0.007	0.000-0.001	
ile	Pool to pool spacing	*	*	*	28 - 57	47-72	44-95	28-75	33-89	
Profile	Pool length	*	*	*	16 - 23	20-30	12-40	10-24	10-36	
1	Riffle slope/avg water surface slope	0.9-3.2	0.7-1.3	0.3-1.4	1.6 - 3.6	1.0-4.2	1.3-1.6	0.9-2.0	0.4-1.4	
	Pool slope/avg water surface slope	*	*	*	0.2 - 1.0	0.0-0.3	0.0-0.9	0.0-1.0	0.00-0.08	
	Pool length/bankfull width	*	*	*	2.3 - 3.4	1.9-2.9	1.0-3.5	0.7-1.8	0.7-2.7	
	Pool to pool spacing/bankfull width	*	*	*	4.1 - 8.3	4.6-7.0	3.8-8.3	2.1-5.6	2.4-6.6	

* T1-1, T1-2 and T2-2 are not meandering channels and are mostly composed of riffles and runs; therefore no pattern data or pool data was shown.

** No pool cross-section were surveyed for Ref. Reach UT to Irish Buffalo.

	Variables	Existing	Ref. Reach	Proposed	
	Doscon Stream Type		UTFR	T1A-3	
Rosge	n Stream Type	F4	B4c	B4c/C4	
Mitiga	tion Type	Restoration	N/A	Restoration	
Draina	age Area (mi ²)	0.05	0.4	0.05	
Bankfull Width (W _{bkf}) (ft)		9.3	9.0-10.0	6.0	
Bankf	ull Mean Depth (d _{bkf}) (ft)	0.5	1.1-1.2	0.5	
	ull Cross-Sectional area (A _{bkf}) (ft ²)	4.3	10.4-10.7	3.2	
Width	/depth Ratio (W_{bkf}/d_{bkf})	20.1	8.0-10.0	11.2	
	num Depth (d_{mbkf}) (ft)	0.7	1.3-1.5	0.9	
Width	of flood prone area (W_{fpa}) (ft)	10.0	13-21	14	
Entren	chment Ratio (ER)	1.1	1.3-2.3	2.2	
Sinuos	sity (stream length/valley length) (K)	1.06	1.20	1.09	
	Pool Depth (ft)	*	1.2-1.4	0.9	
	Riffle Depth (ft)	0.5	1.1-1.2	0.5	
	Max Pool Depth (ft)	*	2.1-2.4	1.9	
	Pool Width (ft)	*	8.4-11.6	8.0	
	Riffle Width (ft)	9.3	9.0-9.9	6.0	
и	Pool XS Area (sf)	*	11.6-13.4	7.4	
Dimension	Riffle XS Area (sf)	4.3	10.4-10.7	3.2	
ime	Pool depth/mean riffle depth	*	1.0-1.3	1.9	
D	Pool width/riffle width	*	0.8-1.3	1.3	
	Pool area/riffle area	*	1.1-1.3	2.3	
	Max pool depth/d _{bkf}	*	1.9-2.0	3.8	
	Bank Height Ratio (BHR)	8.6	1.0	1.0	
	Mean Bankfull Velocity (V) (fps)	2.5	4.1-4.5	3.6	
	Bankfull Discharge (Q) (cfs)	10.8	42-46	11.6	
	Meander length (L_m) (ft)	*	93-136	50-80	
	Radius of curvature (R_c) (ft)	*	13-42	12-27	
ern	Belt width (W _{blt}) (ft)	*	45	15-30	
Pattern	Meander width ratio (W_{blt}/W_{bkf})	*	4.5-5.0	2.5-5.0	
	Radius of curvature/bankfull width	*	1.3-4.4	2.0-4.5	
	Meander length/bankfull width	*	9.0-15.0	8.3-13.3	
	Valley slope	0.025	0.016	0.025	
	Average water surface slope	0.018	0.013	0.017	
	Riffle slope	*	0.013-0.028	0.020-0.030	
	Pool slope	*	0-0.0010	0-0.008	
file	Pool to pool spacing	*	30-59	20-40	
Profile	Pool length	*	3-25	6-12	
7	Riffle slope/avg water surface slope	*	1.00-2.20	1.2-1.8	
	Pool slope/avg water surface slope	*	0	0.0-0.5	
	Pool length/bankfull width	*	0.3-2.5	1.0-2.0	
	Pool to pool spacing/bankfull width	*	3.3-6.0	3.3-6.7	

* T1A-3 is not meandering channel and is mostly composed of riffles and runs;

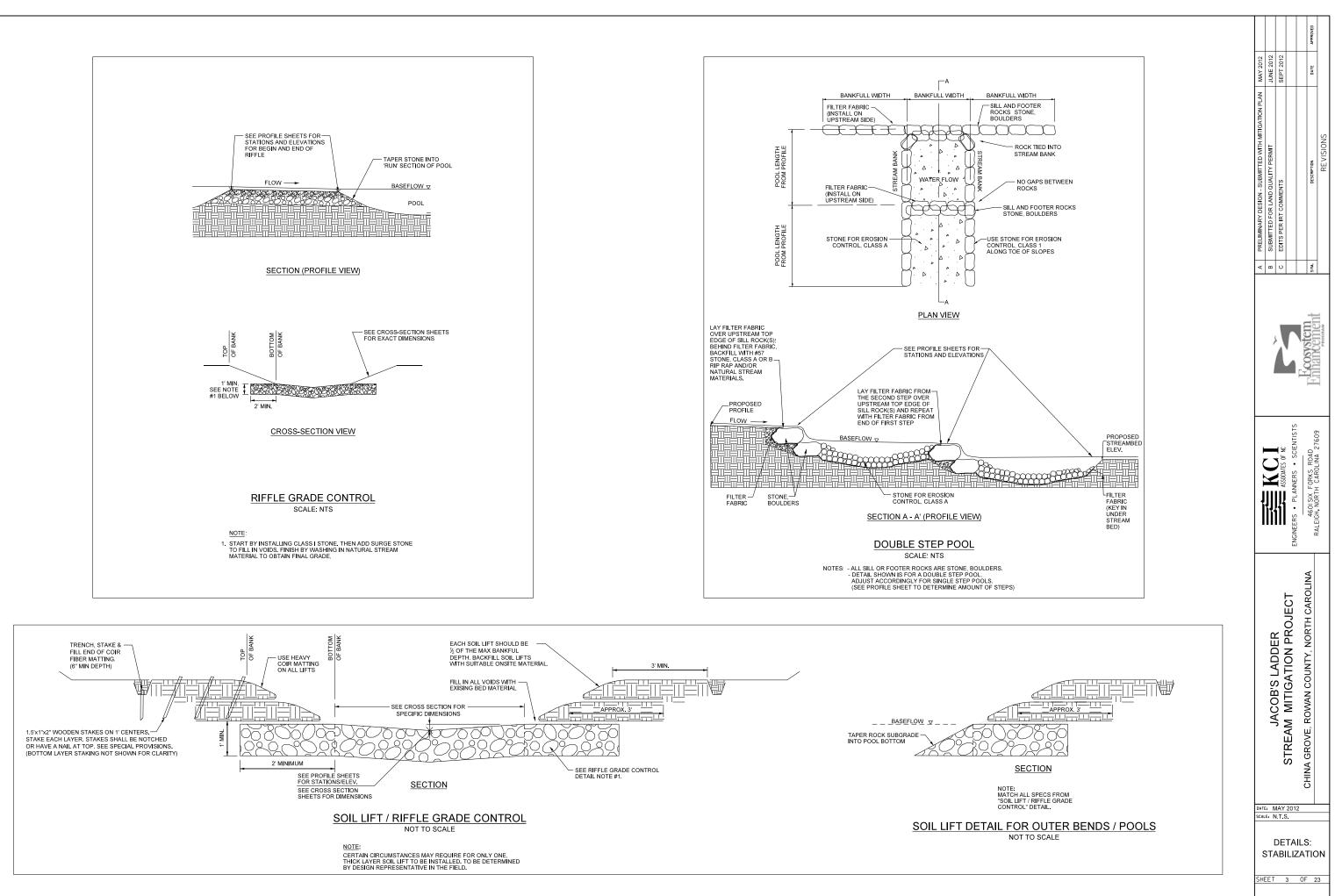

therefore no pattern data is shown.

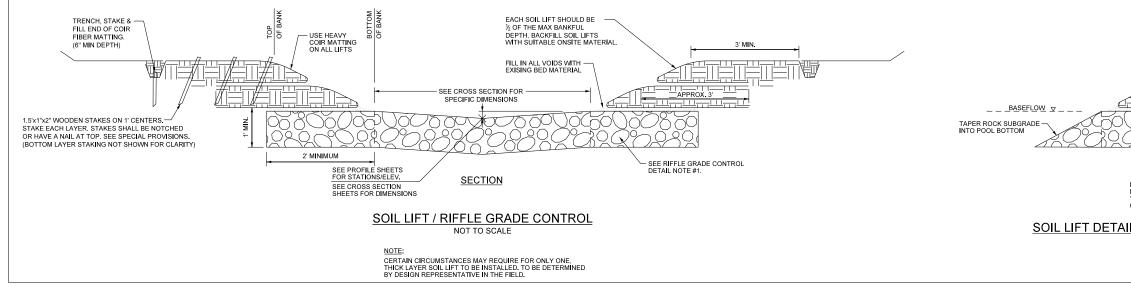
Variables		Existing	Ref. Reach UT	Proposed	
	variables	T1A-1, T1A-2	to Wilkinson	T1A-1, T1A-2	
Rosge	n Stream Type	C4	B4c	B4c/C4	
Mitiga	tion Type	Enh. I/Enh. II	N/A	Enh. I, Enh. II	
Drainage Area (mi ²)		0.05	0.15	0.05	
Bankf	ull Width (W _{bkf}) (ft)	12.7	7.7 - 10.8	7.0	
Bankf	ull Mean Depth (d _{bkf}) (ft)	0.4	0.7 - 0.9	0.6	
Bankf	ull Cross-Sectional area (A_{bkf}) (ft^2)	4.5	6.1 - 8.8	3.9	
Width	/depth Ratio (W _{bkf} /d _{bkf})	35.8	8.5 - 11.4	12.5	
Maxin	num Depth (d _{mbkf}) (ft)	0.9	1.3 - 1.7	0.9	
Width	of flood prone area (W_{fpa}) (ft)	30	13.0 - 16.0	15	
Entren	chment Ratio (ER)	2.4	1.6 - 2.1	2.2	
Sinuos	sity (stream length/valley length) (K)	1.11	1.20	1.11	
	Pool Depth (ft)	-	0.8-0.9	1.0	
	Riffle Depth (ft)	0.4	0.7-0.9	0.6	
	Max Pool Depth (ft)	-	2.2	1.9	
	Pool Width (ft)	-	10.0-10.8	9.3	
	Riffle Width (ft)	12.7	7.7-10.8	7.0	
ı	Pool XS Area (sf)	-	8.6-8.8	8.9	
ision	Riffle XS Area (sf)	4.5	6.1-8.8	3.9	
Dimension	Pool depth/mean riffle depth	-	0.9-1.3	1.6	
D_{i}	Pool width/riffle width	-	0.9-1.4	1.3	
	Pool area/riffle area	-	1.0-1.4	2.3	
	Max pool depth/d _{bkf}	-	2.4-3.1	3.2	
	Bank Height Ratio (BHR)	1.0	1.0	1.0	
	Mean Bankfull Velocity (V) (fps)	2.2	5.1-5.8	2.9	
	Bankfull Discharge (Q) (cfs)	10.6	31.0-49.0	11.5	
	Meander length (L_m) (ft)	55-95	49-59	55-95	
	Radius of curvature (R _c) (ft)	7-20	11-23	12-25	
ern	Belt width (W _{blt}) (ft)	10-30	22	10-30	
Pattern	Meander width ratio (W_{blt}/W_{bkf})	4.3-7.5	2.0-2.9	1.4-4.3	
	Radius of curvature/bankfull width	0.6-2.4	1-3	2-4	
	Meander length/bankfull width	0.8-2.4	4.5-7.7	7.9-13.6	
	Valley slope	0.020	0.017	0.014	
	Average water surface slope	0.015	0.012	0.012	
	Riffle slope	0.013-0.018	0.012-0.028	0.006-0.020	
	Pool slope	-	0.000-0.003	0.003-0.006	
file	Pool to pool spacing	-	-	22-63	
Profile	Pool length	-	5-9	7-11	
	Riffle slope/avg water surface slope	0.9-1.2	1.00-2.30	0.5-1.7	
	Pool slope/avg water surface slope	-	0.16-0.24	0.3-0.5	
	Pool length/bankfull width	-	0.46-1.80	1.0-1.6	
	Pool to pool spacing/bankfull width	-	-	3.1-9.0	

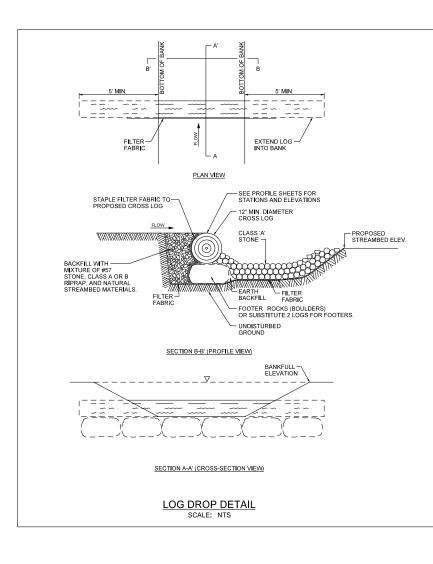
- T1A-1 and T1A-2 are mostly composed of riffles and runs; therefore no pool data was shown.

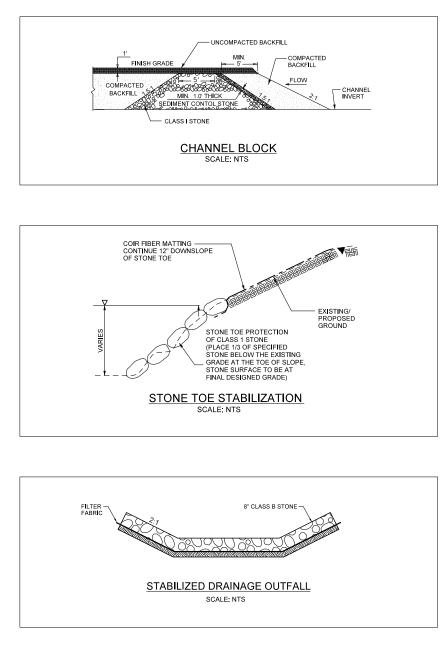
Appendix D

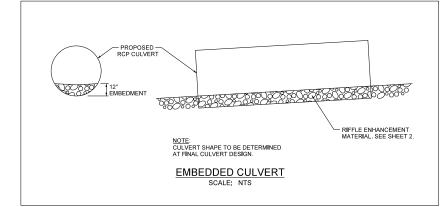
Project Plan Sheets

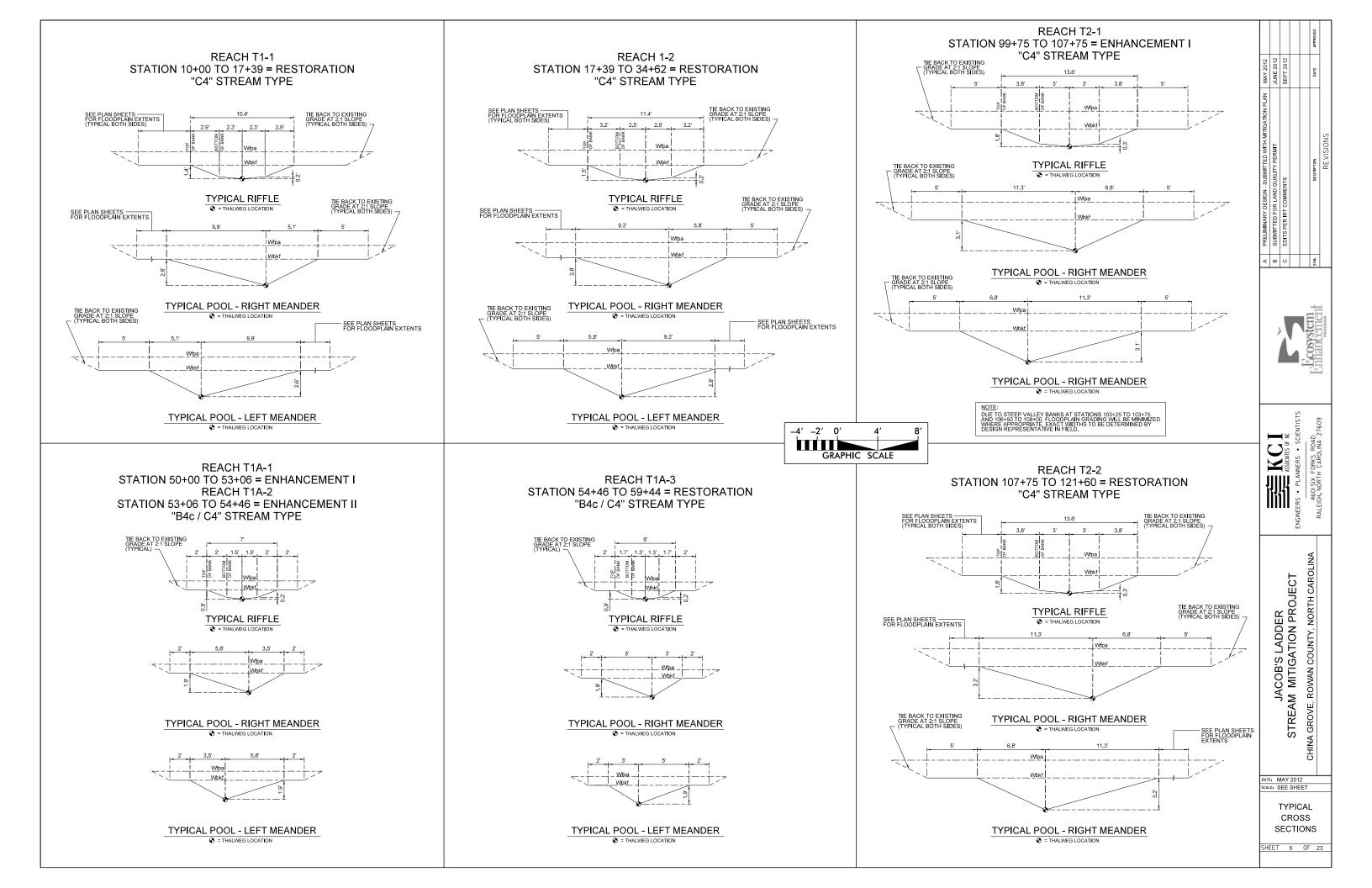

GENERAL NOTES:	CON
BEARINGS AND DISTANCES: ALL BEARINGS ARE NAD 1983 GRID BEARINGS.	POINT
ALL DISTANCES AND COORDINATES SHOWN ARE HORIZONTAL (GROUND)	KCI#01
VALUES.	KCI#02
	KCI#03
UTILITY/SUBSURFACE PLANS:	KCI#04
NO SUBSURFACE PLANS ARE AVAILABLE ON THIS PROJECT. EXISTING	KCI#05
UNDERGROUND UTILITIES HAVE NOT BEEN VERIFIED.	KCI#06
THE CONTRACTOR IS RESPONSIBLE FOR CONTACTING A UTILITY LOCATOR	KCI#07
AND ESTABLISHING THE EXACT LOCATION OF ANY	KCI#08
AND ALL EXISTING UTILITIES IN THE PROJECT REACH.	KCI#09
	KCI#10
IT IS BROUGHT TO THE CONTRACTOR'S ATTENTION THAT AN OVERHEAD	KCI#11
POWER LINE IS LOCATED ON THIS PROJECT (SEE SHEET 7). EXACT	KCI#12
LOCATION TO BE DETERMINED BY CONTRACTOR.	KCI#13
	KCI#14
IT IS BROUGHT TO THE CONTRACTOR'S ATTENTION THAT A GAS LINE	KCI#15
EASEMENT IS LOCATED ON THIS PROJECT (SEE TITLE SHEET). EXACT	KCI#16
LOCATION TO BE DETERMINED BY CONTRACTOR.	KCI#17
	KCI#18
CONTRACTOR IS RESPONSIBLE FOR PROVIDING TEMPORARY	KCI#19
ACCESS ACROSS STREAMS FOR LAND OWNER DURING	KCI#20
CULVERT REPLACEMENT.	KCI#21 KCI#22

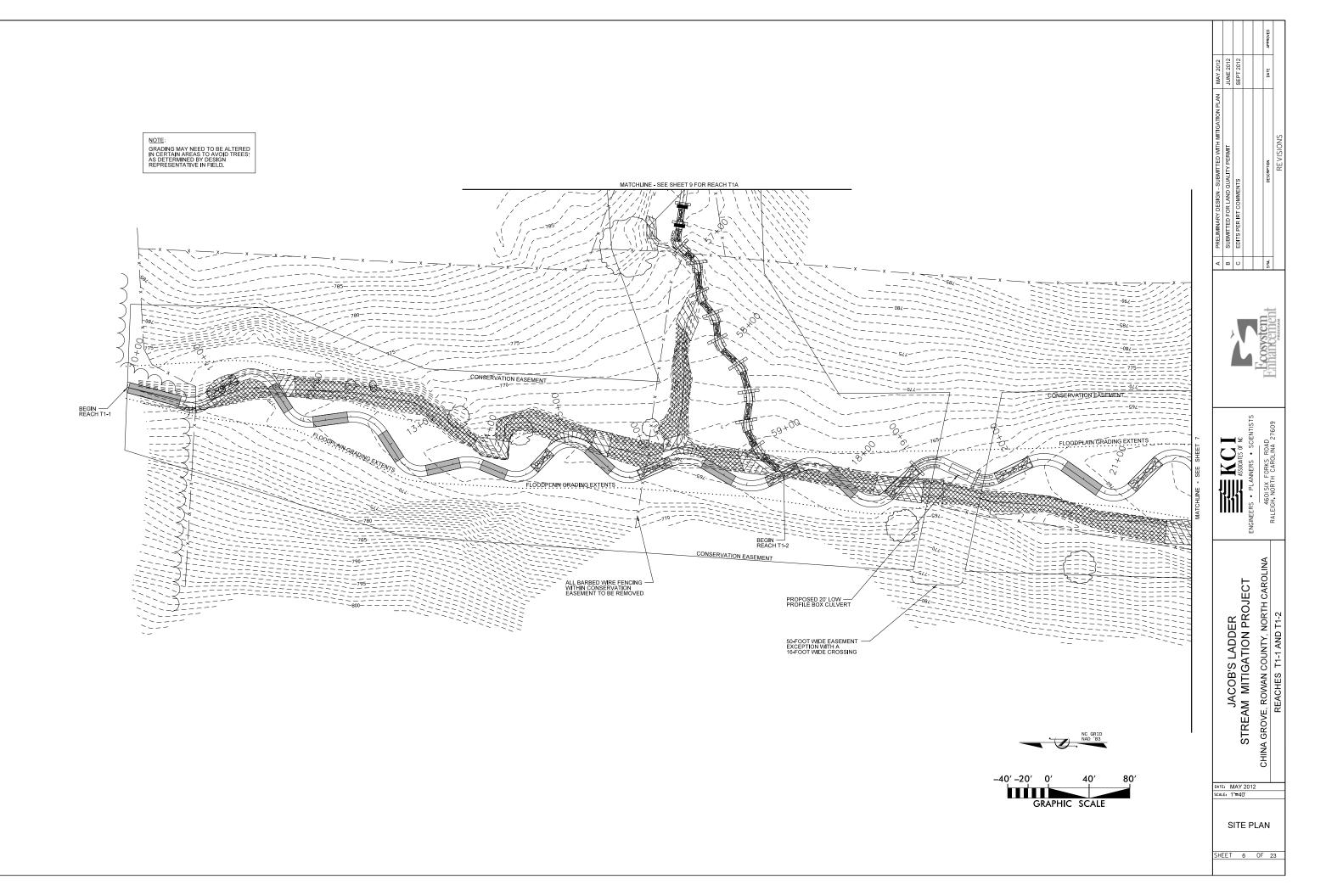

CON	TROL PO	DINTS		MAY 2012 MUUE 2012 SEPT 2012 SEPT 2012 MAR 2012
POINT	NORTHING	EASTING	ELEV	PRELIMINARY DESIGN - SUBMITTED WITH MITGATION PLAN SUBMITTED FOR LAND OUALITY PERMIT EDITS PER IRT COMMENTS EDITS PER IRT COMMENTS
KCI#01 KCI#02	660166.6530 660561.5714	1507419.0150 1507483.8642	749.9200 760.4151	LIGA I
KCI#02 KCI#03	661126.4985	1507405.0042	762.8247	
KCI#04	661581.3128	1507565.8405	769.8388	PRELIMINARY DESIGN - SUBMITTED WITH MI SUBMITTED FOR LAND QUALITY PERMIT EDITS PER IRT COMMENTS
KCI#05	661165.6119	1507163.4532	805.7027	UBMITTE S S S S S
KCI#06	662066.1646	1507619.2198	782.7055	- SUB
KCI#07	662168.8809	1507726.7350	791.6899	DESIGN - SUU DESIGN - SUU COMMENTS
KCI#08	661736.5136	1507898.2760	790.2148	A DEC
KCI#09	661887.8459	1508251.3061	791.1339	MINARY D PERIRT
KCI#10	659005.5578	1509000.5631	742.3300	
KCI#11 KCI#12	659359.9904 658827.8391	1508911.6989	760.6932	
KCI#12 KCI#13	659776.4506	1509265.0106 1509245.0112	749.6684 752.1122	Synthesis and State and St
KCI#13	659961.2182	1509393.9052	753.6455	
KCI#15	660081.4788	1509488.2127	755.2711	
KCI#16	660163.6570	1509558.2222	755.9459	
KCI#17	660354.0435	1509550.1486	757.9904	
KCI#18	660466.6157	1509620.0168	759.6410	
KCI#19	660628.1248	1509730.0588	759.0129	
KCI#20	659339.8103	1509268.3486	755.1816	
KCI#21 KCI#22	659656.6209 660103.9096	1509321.0114 1509262.7715	754.0829 762.6000	
				SI US
е			$\overline{)}$	ASSOCIATES OF MC
e				
		·····		ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
				ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
;		·····	 	ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
ire Fenc	ing	·····	 	ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
ire Fenc		·····	 	ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
ire Fenc	ing	·····	 	ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
ire Fenc	ing	·····	 	ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
ire Fenc	ing	·····	 	ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
ire Fenc	ing	·····	 	ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
ire Fenc	ing	·····	 	ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
ire Fenc	ing	·····	 	ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
ire Fenc	ing	·····	 	ENGINEERS + PLANNERS -
ire Fenc	ing	·····	 	JACOB'S LADDER JACOB'S LADDER STREAM MITIGATION PROJECT CHINA GROVE, ROWAN COUNTY, NORTH CAROLINA
ire Fenc	ing	·····	 	ENCINEERS OF PLANNERS OF RALEGA-NORTH CAROLER
ire Fenc	ing	·····	 	Image: Stream Mittigation Project Image: Stream Mittigation Project Image: Stream Mittigation Project Image: Stream Mittigation Project CHINA GROVE, ROWAN COUNTY, NORTH CAROLINA Image: All Stream Mittigation Project
ire Fenc	ing	·····	 	DATE MAY 2012 ATTE MULLICATION PROJECT CHINA GROVE, ROWAN COUNTY, NORTH CAROLINA ATTE MORTH CAROLINA CHINA GROVE, ROWAN COUNTY, NORTH CAROLINA ATTE MARKE AT AMPERS ATTE MARKE AT A AMPERS ATTE MARKE AT AMPERS ATTE MARKE AT A AMPERS ATTE AT A
ire Fenc	ing	·····	 	Image: Stream Milication Project Image: Stream Milication Project Image: Stream Milication Project Image: Stream Stre
ire Fenc	ing	·····	 	DATE MAY 2012 ATTE MULLICATION PROJECT CHINA GROVE, ROWAN COUNTY, NORTH CAROLINA ATTE MORTH CAROLINA CHINA GROVE, ROWAN COUNTY, NORTH CAROLINA ATTE MARKE AT AMPERS ATTE MARKE AT A AMPERS ATTE MARKE AT AMPERS ATTE MARKE AT A AMPERS ATTE AT A

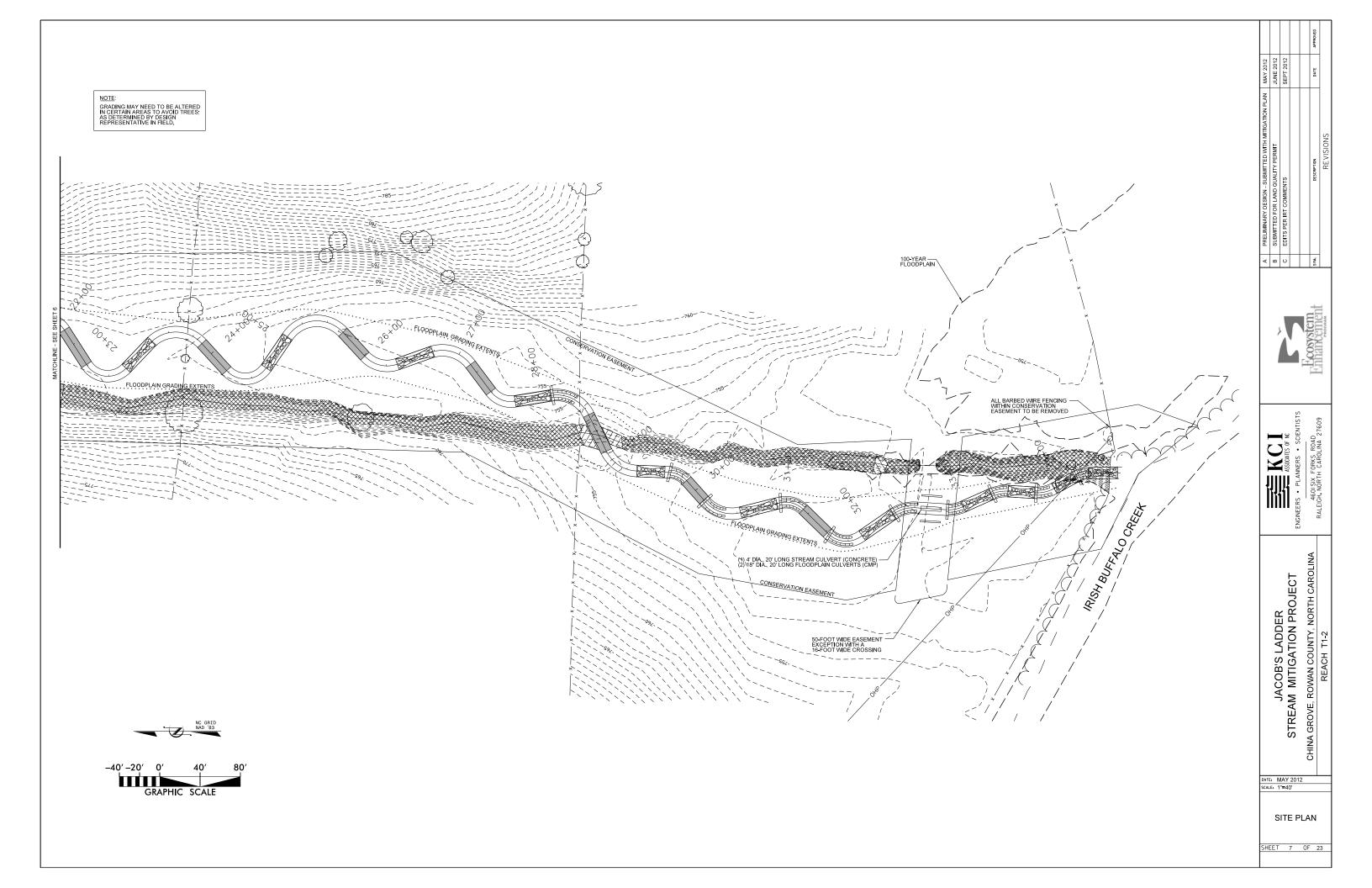

PROJECT LEGEND:

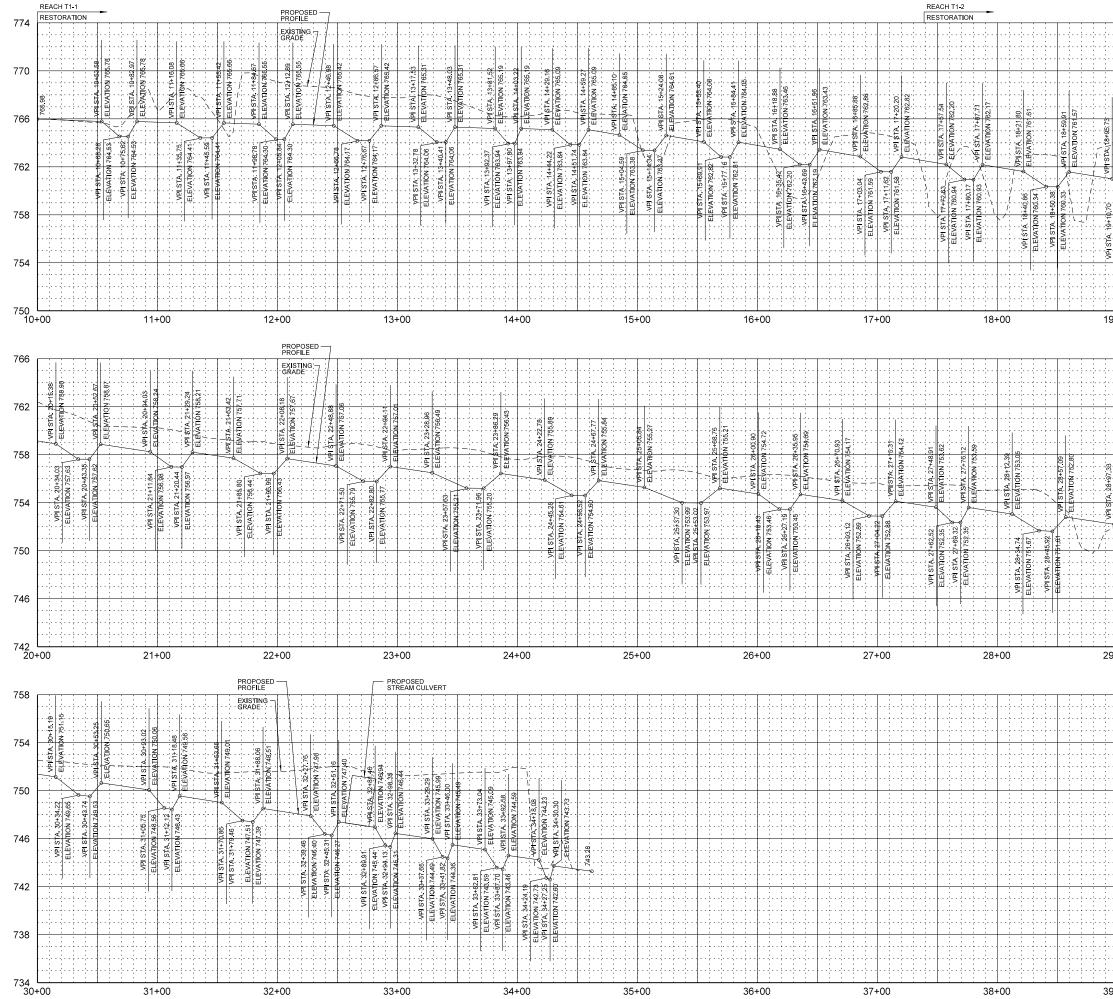

Proposed Thalweg w/Approximate Bankfull Limits	
Proposed Log Drop	(2 2)
Proposed Step Pool	
Proposed Riffle Grade Control	San
Proposed Live Lift	
Proposed Riffle Enhancement RIFFLE ENHANCEMENT MATERIAL: MINIMUM OF 6" DEPTH OF SURGE STONE, WASHED IN WITH NATIVE BED MATERIAL. EXTEND INTO 'RUN' SECTION OF POOL AREA.	
Proposed Stone Toe Stabilization	
Proposed Channel Block	
Existing Channel to be Filled	


Existing Woods Line	$\frown \frown \frown \frown$
Single Tree	\bigcirc
Minor Contour Line	
Major Contour Line	
Existing Barbed Wire Fencing	-xx
Existing Overhead Power Line	OHP

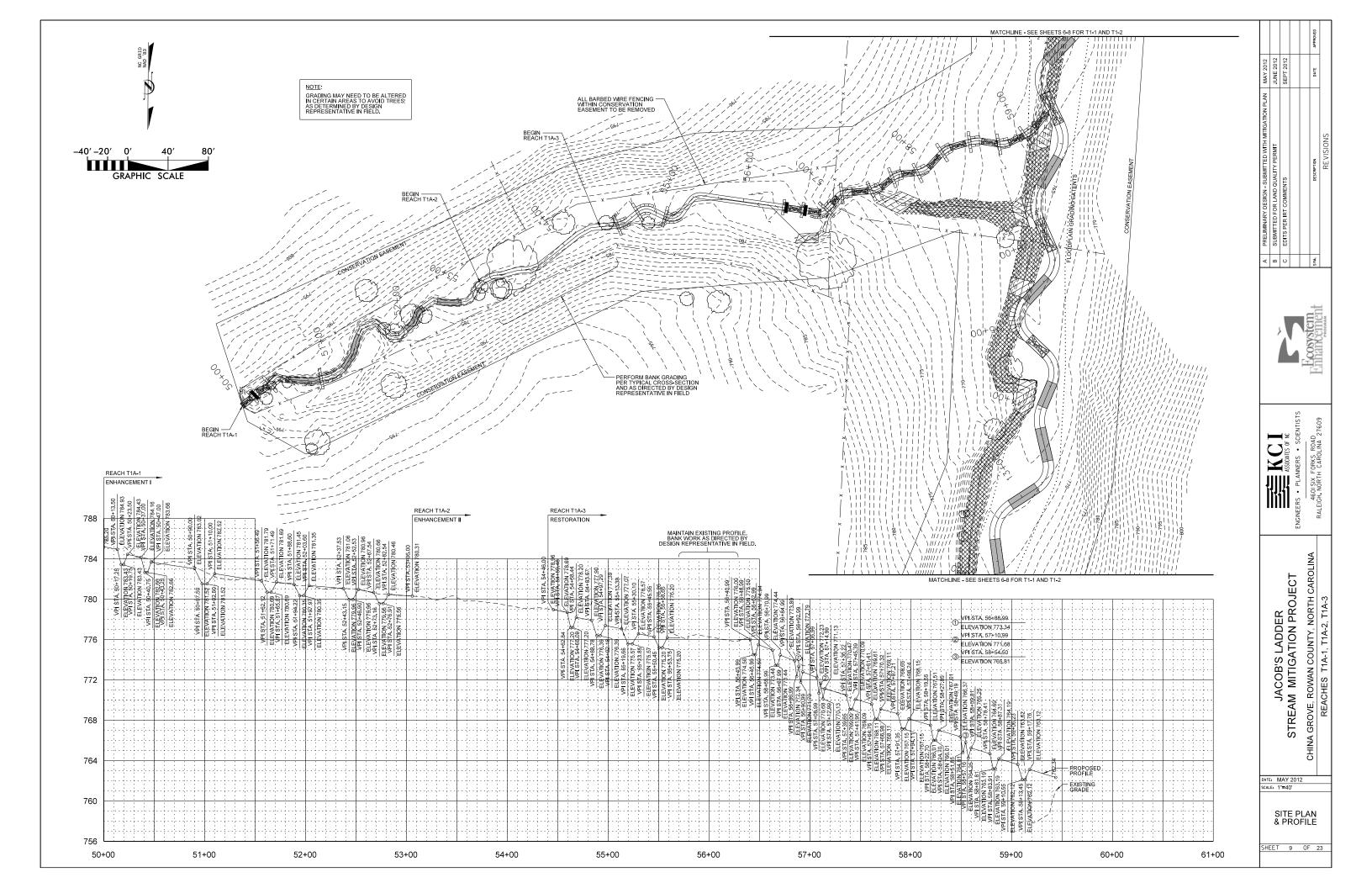


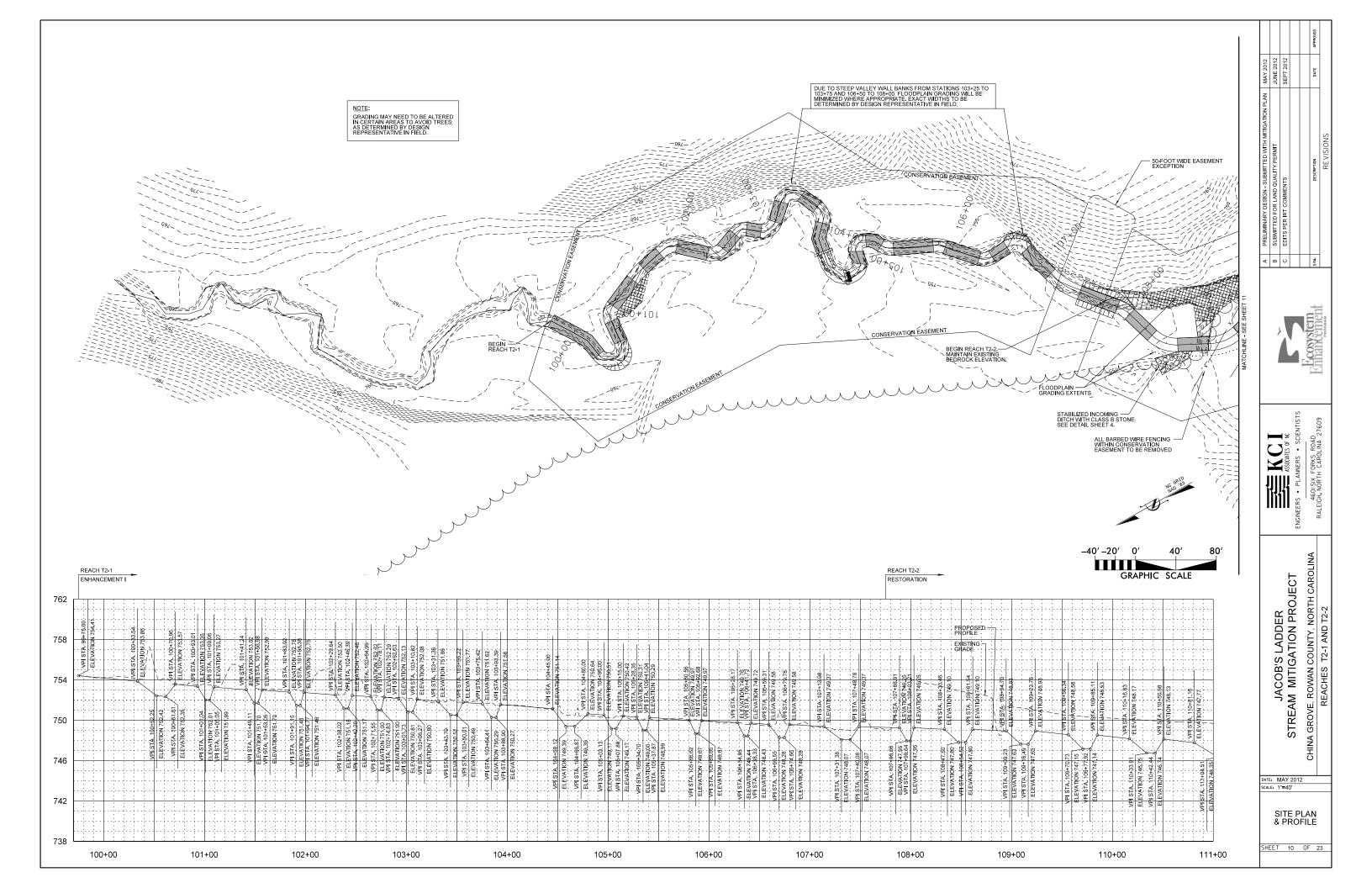


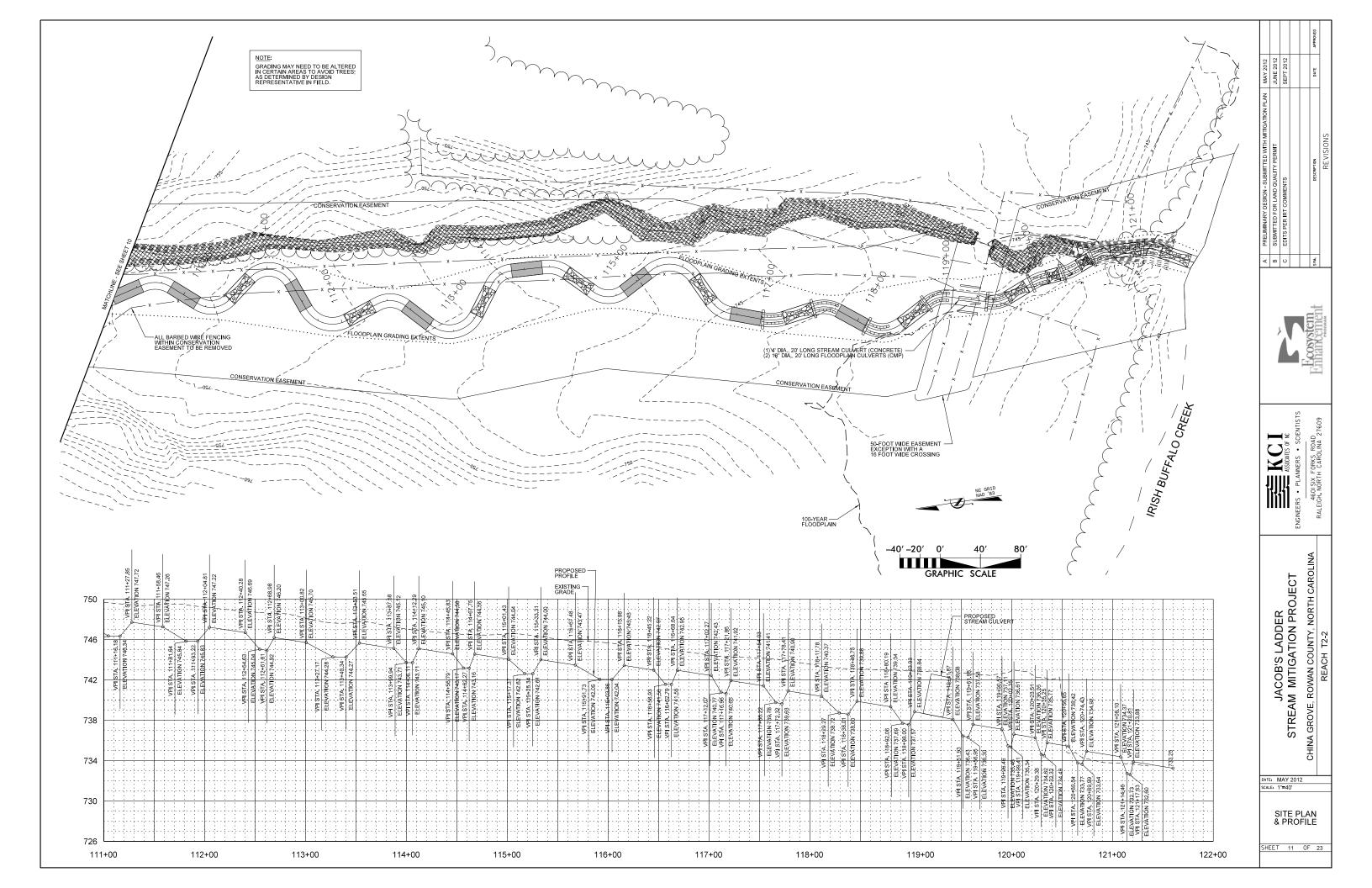


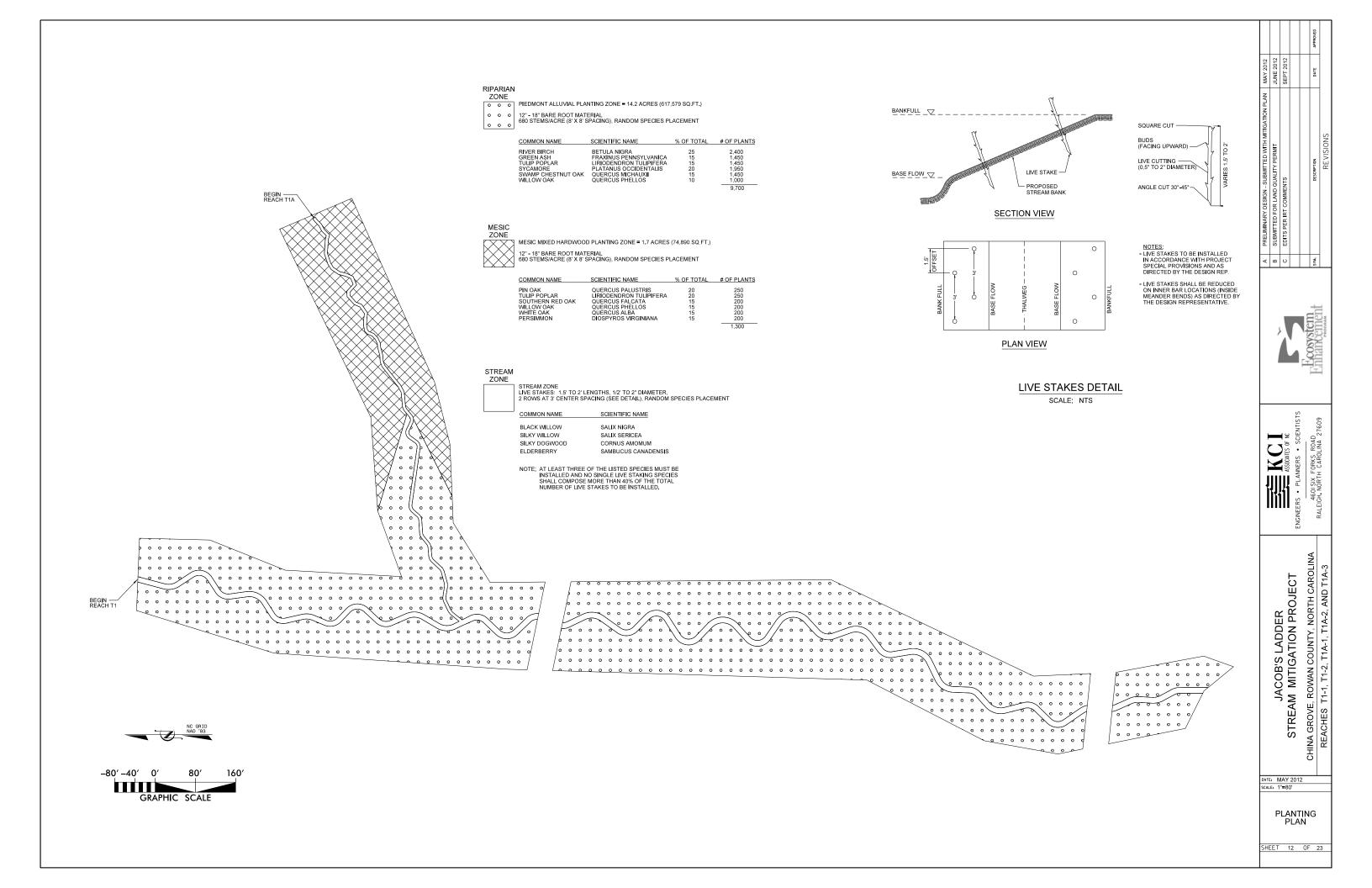


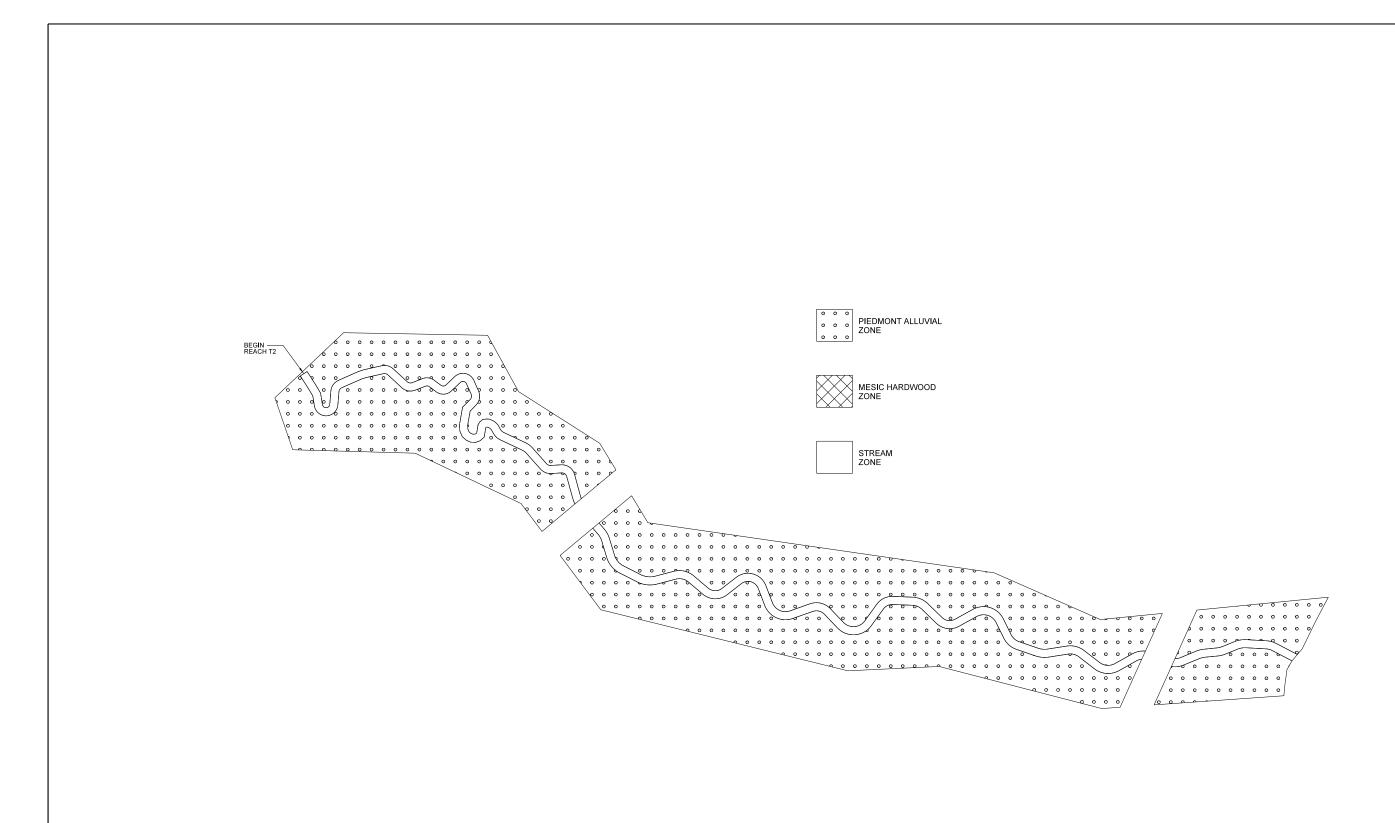
	TE APPROVED	1	SEPT 2012	JUNE 2012	2012
REVISIONS	DATE		EDITS PER IRT COMMENTS SEPT	SUBMITTED FOR LAND QUALITY PERMIT	PRELIMINARY DESIGN - SUBMITTED WITH MITIGATION PLAN MAY 2012
	SYM.	+	E C	В	A PI
PROGRAM	Fundancement	ſ,	4	,	
	4601 SIX FORKS ROAD	Í.	łi		
	CHINA GROVE, ROWAN COUNTY, NORTH CAROLINA	STREAM MITIGATION PROJECT			
		ETAII	DE	LE: N	
	LS:	BILIZ	A D.		

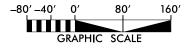


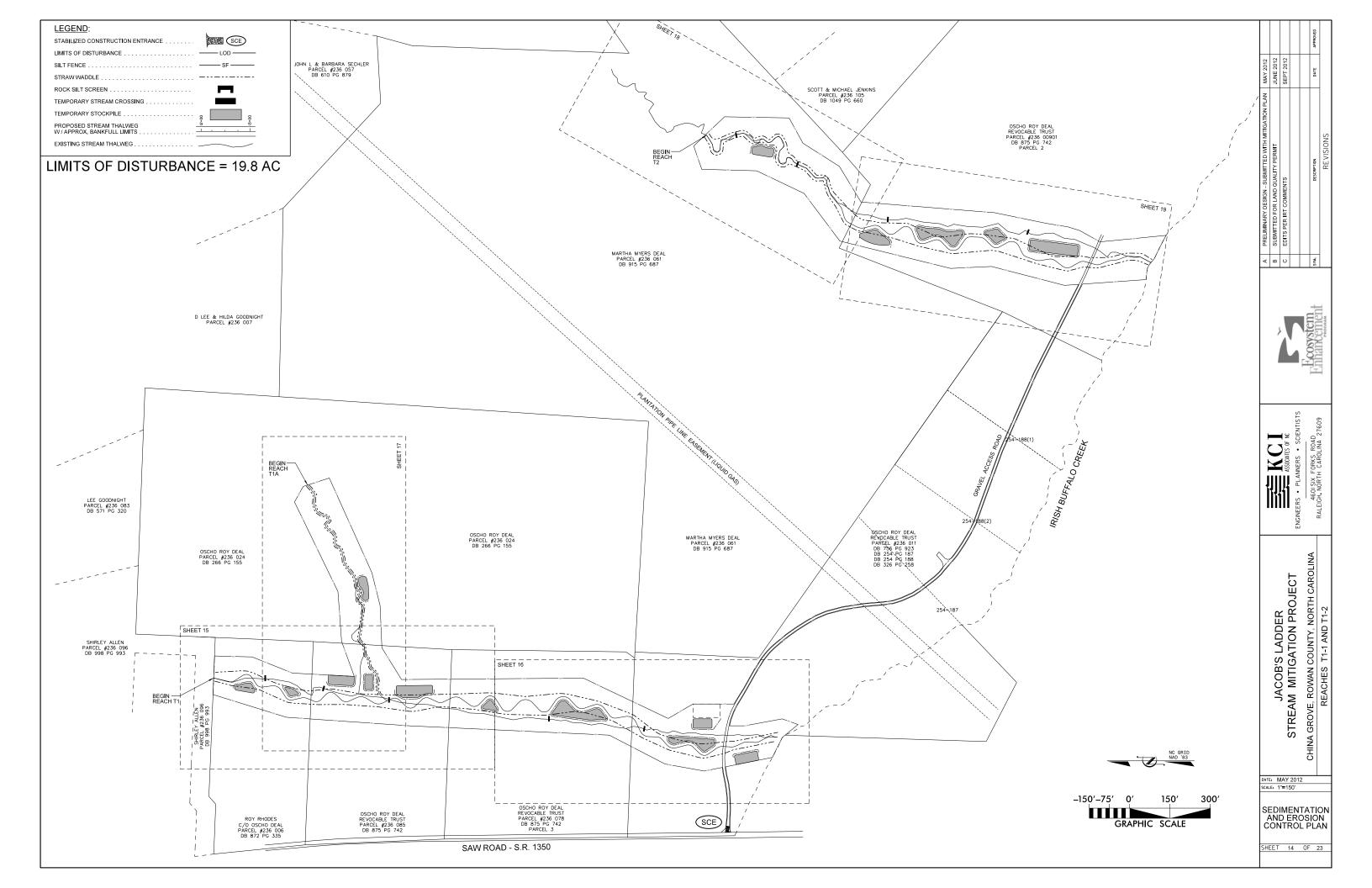


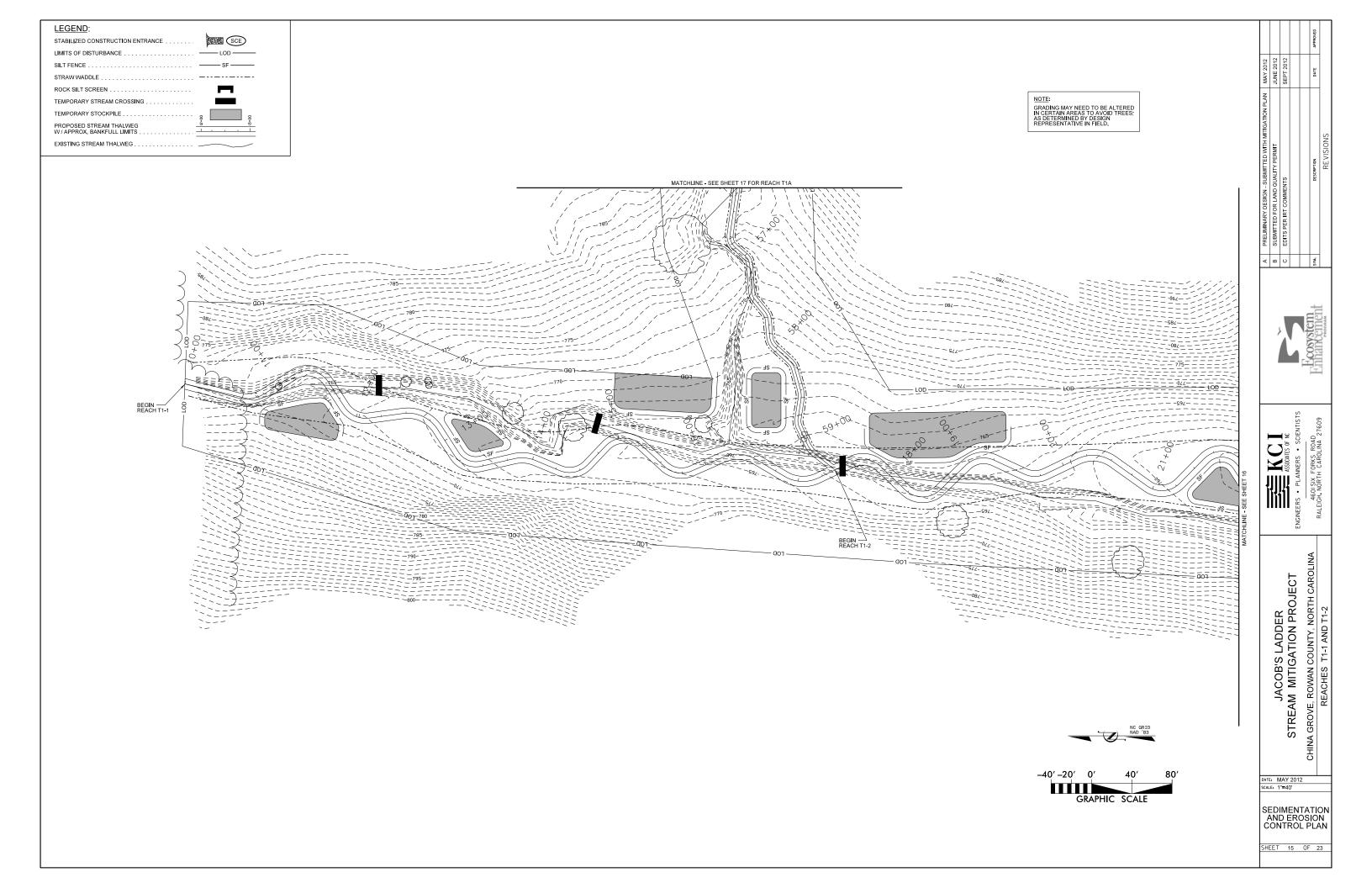


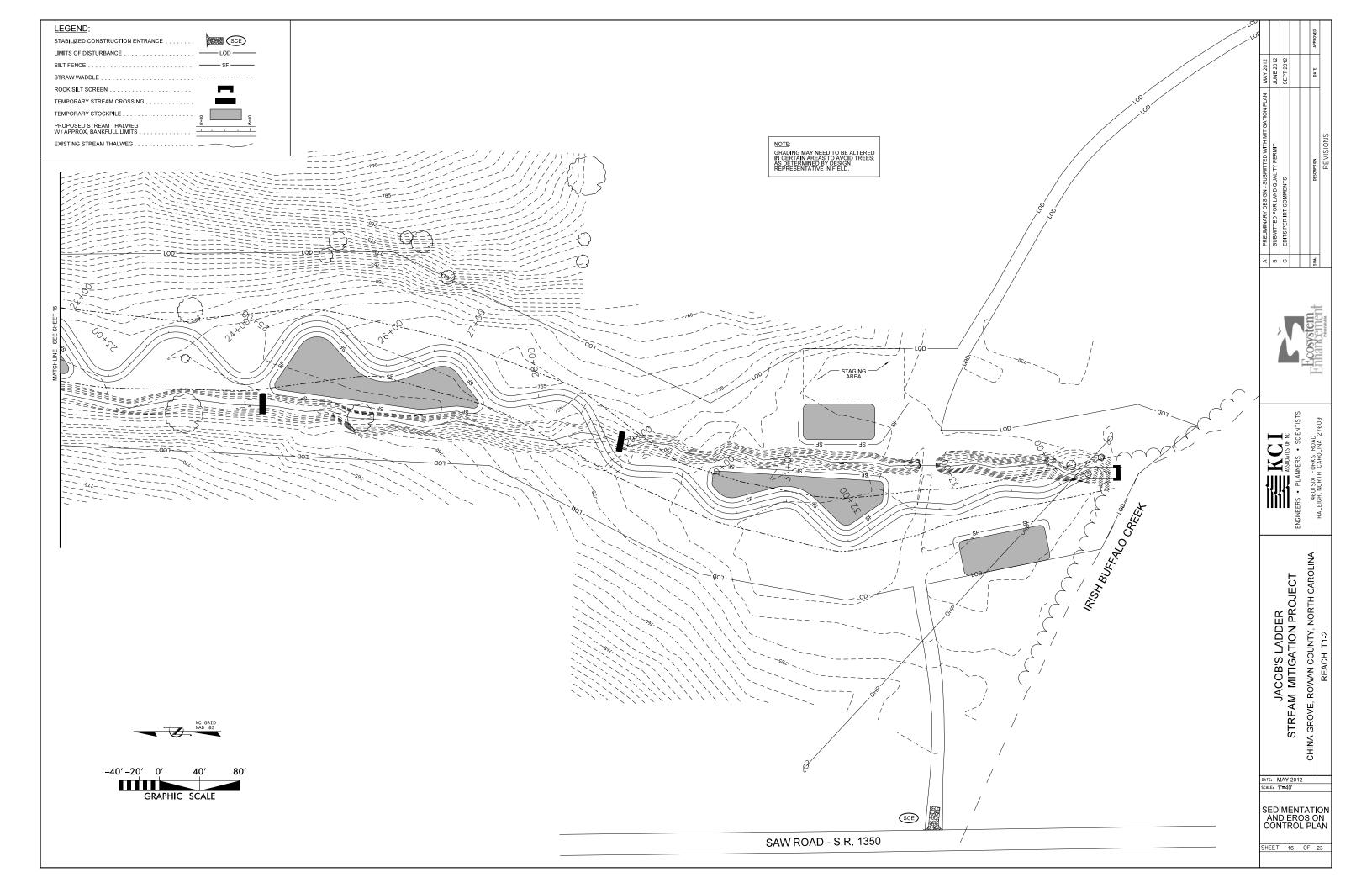


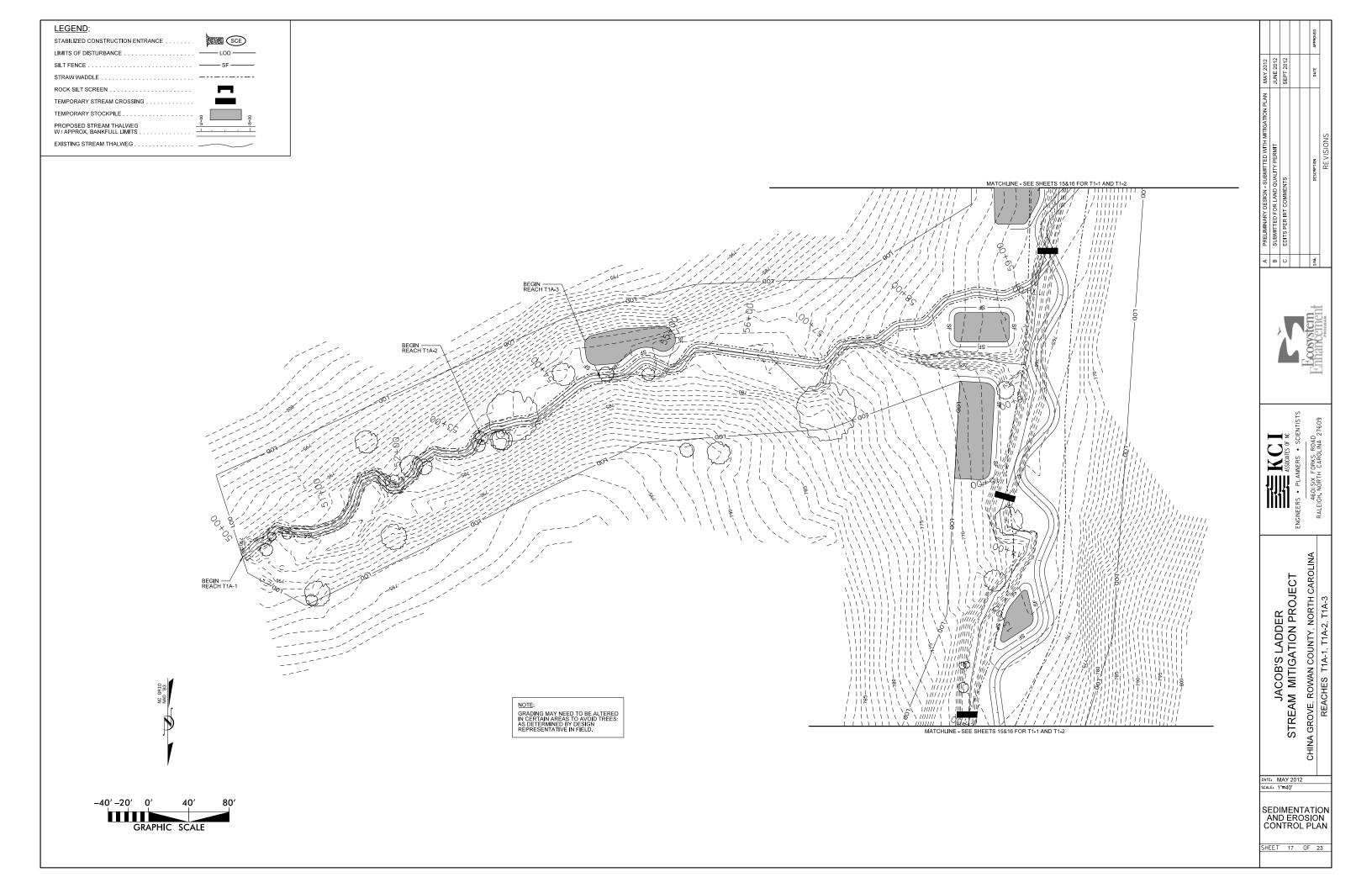

VETSIN, 19-10.10 ELEVATION 758.50 VPI SIA, 19-16,118 ELEVATION 758.37 VPI STA, 19-16,118 ELEVATION 758.37 VPI STA, 19-16,118 ELEVATION 758.37 ELEVATION 758.37	158.34 VPI SIA, 19+88.41 158.34 VPI SIA, 19+80.40 758.34 VPI SIA, 19+80.40 759.45 VPI SIA, 1956.30 63 ELEVATION 756.30 63 VPI SIA, 20+15.38		PRELIMINARY DESIGN - SUBMITTED WITH MITIGATION PLAN MAY 2012 SUBMITTED FOR LAND QUALITY PERMIT JUNE 2012 EDITS PER IRT COMMENTS SEPT 2012 EDITS PER IRT COMMENTS SEPT 2012 REVISIONS ONTE APPROVED
9+00		21+00	A PRELIM B SUBMIT C EDITS P Svu
21-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-			STS ETEROSYSTC
VEI STA 29416.13 VEI ALA. 2007.130 ELEVÁTIÓN 750.93 VEI ELEVÁTIÓN 752.20 VPI STA: 29426.58 VEI ALAVIAN 752.40 VPI STA: 29426.58 VEI ALAVIAN 752.40 VPI STA: 29426.58 VEI ALAVIAN 752.40	VPI STA. 29+15.68 VPI STA. 29+15.68 VPI STA. 29+15.68 VPI STA. 29+15.68 VPI STA. 29+15.17 ELEVATION 750.38 VPI STA. 29+15.17 VPI STA. 20+15.17 VPI STA. 20+15		ENGINEERS • PLANNERS • SCIENTISTS RALEIGH, NORTH CARS INDA
9+00	30+00	31+00	ER PROJECT IORTH CAROLINA 1-2
			JACOB'S LADDER STREAM MITIGATION PROJECT CHINA GROVE, ROWAN COUNTY, NORTH CAROLINA REACHES T1-1 AND T1-2
			DATE: MAY 2012 SCALE: 1"=40" PROFILES (T1-1 & T1-2)
9+00	40+00	<u>41+00</u>	SHEET 8 OF 23

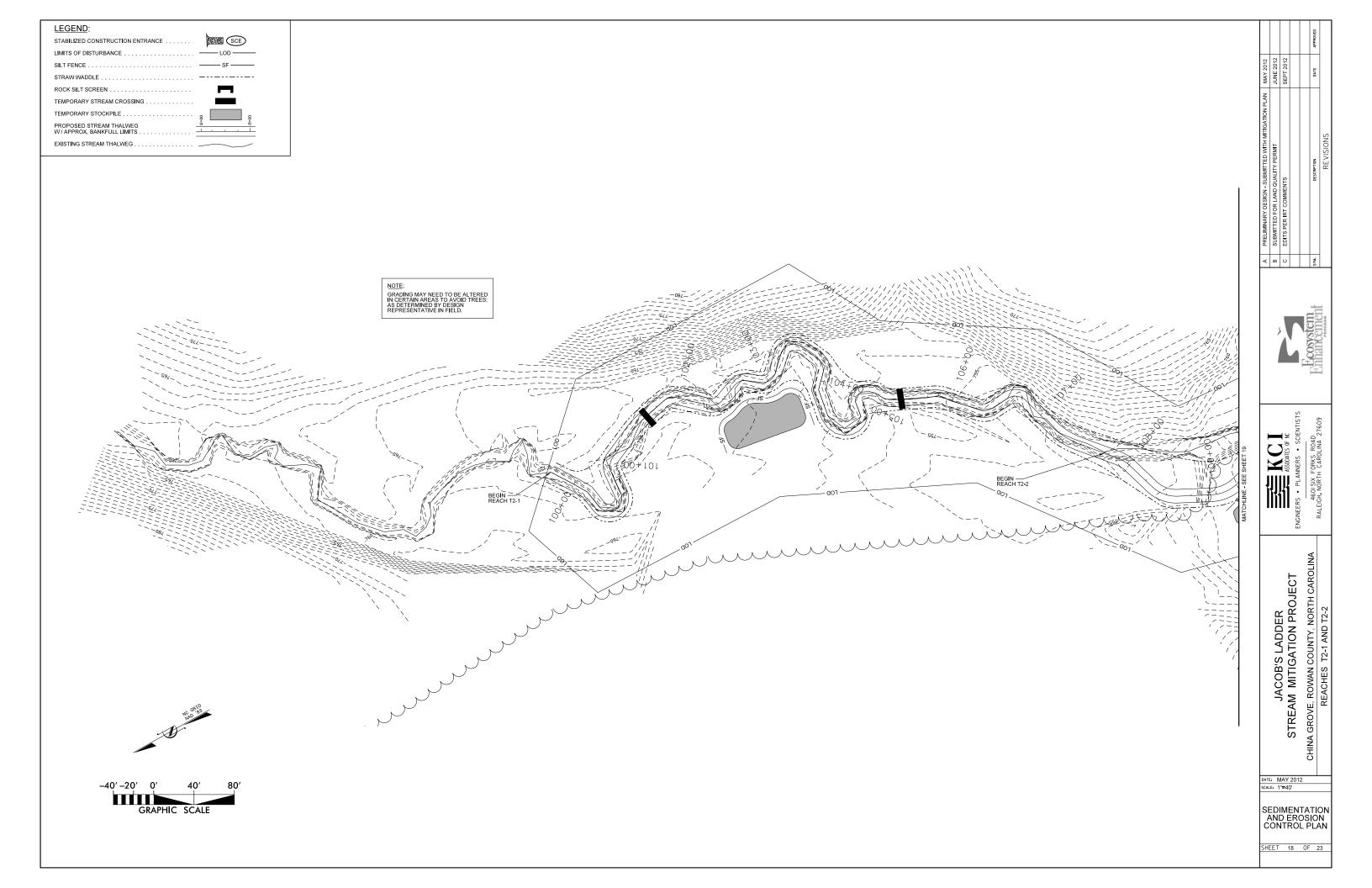


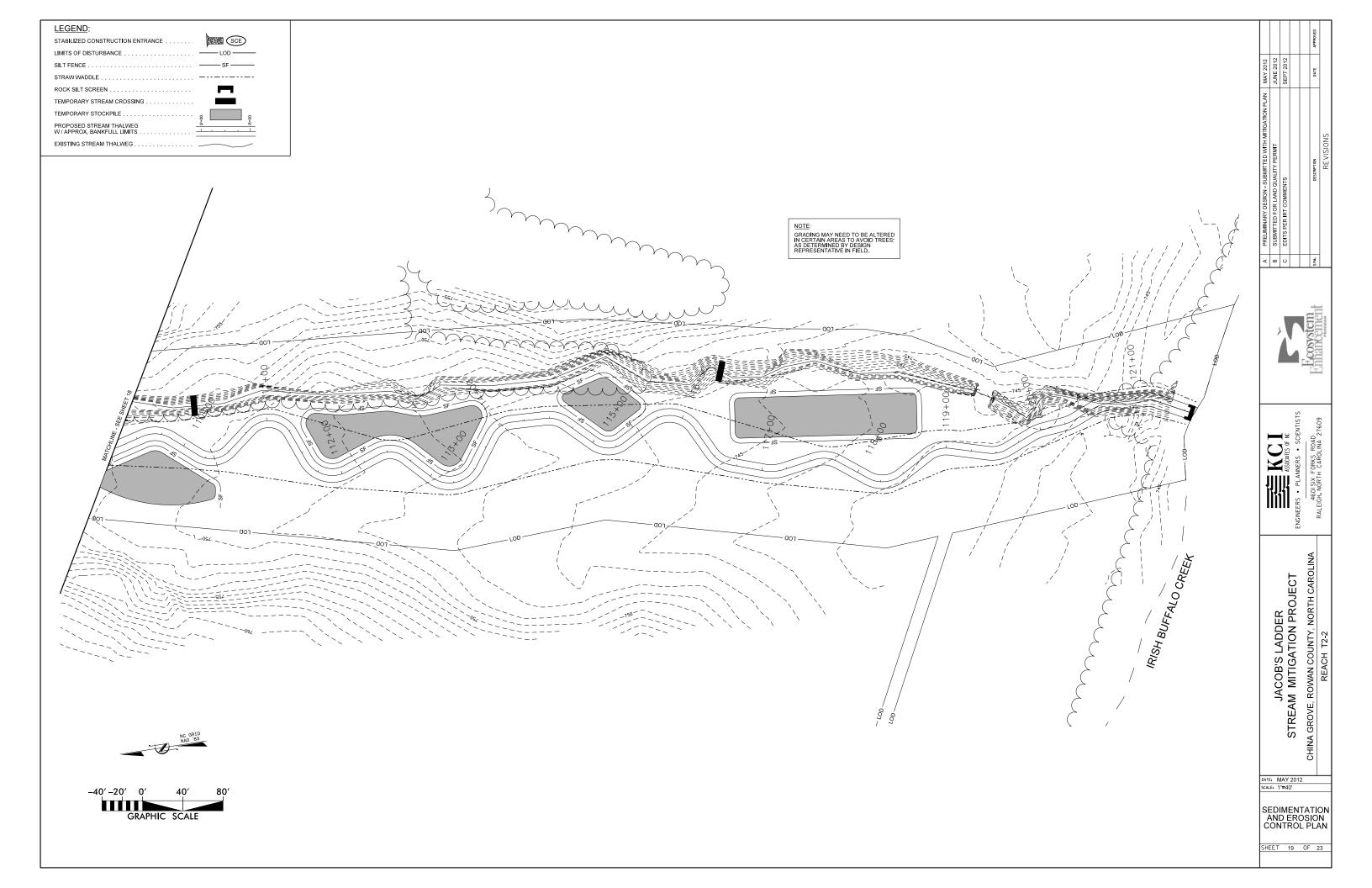









					APPROVED	
MAY 2012	JUNE 2012	SEPT 2012			DATE	-
PRELIMINARY DESIGN - SUBMITTED WITH MITIGATION PLAN	SUBMITTED FOR LAND QUALITY PERMIT	EDITS PER IRT COMMENTS			DESCRIPTION	REVISIONS
۲	в	U			SYM.	1
	Ì			F Anorate	THUNNEL T	
•		OF NC	SCIENTISTS		ROAD	INA 21603
		ASSOCIATES OF NC	FNGINFERS • PI ANNERS • SCIENTISTS		L	KALEIGH, NUKTH LAKULINA ZIGUS
				1	L	4
J DATA	=: N					XALE
	= N					XALE



SEEDBED PREPARATION

THE SEEDBED SHALL BE COMPRISED OF LOOSE UNCOMPACTED SOIL, THIS MAY REQUIRE MECHANICAL LOOSENING OF THE SOIL. SOIL AMENDMENTS SHOULD FOLLOW THE FERTILIZER AND LIMING DESCRIPTION IN THE FOLLOWING SECTIONS. FOLLOWING SEEDING, MULCHING SHALL FOLLOW THE BELOW APPLICATION METHODS AND AMOUNTS.

MULCHING

SEEDED AREAS ARE TO BE PROTECTED BY SPREADING STRAW MULCH UNIFORMLY TO FORM A CONTINUOUS BLANKET (75% COVERAGE = 2 TONS/ACRE) OVER SEEDED AREAS. CONTRACTOR MAY PROPOSE ALTERNATE METHODS OF SEED, FERTILIZER AND LIMING (HYDRO-SEEDING) UPON SUBMISSION TO THE DESIGNER OF CALCULATIONS SHOWING THE EQUIVALENCY OF THE PROPOSED METHOD.

TEMPORARY SEED MIX

THE CONTRACTOR SHALL UTILIZE THE FOLLOWING SEED/FERTILIZER MIX IN SEEDING ALL DISTURBED AREAS WITHIN THE PROJECT LIMITS:

WINTER MIX (AUG 15-MAY 1) RYE GRAIN · · · · · · SECALE CEREALE · · · · 20 LBS / ACRE WHEAT · · · · · · · · · TRITICUM AESTIVUM · · · 10 LBS / ACRE

SUMMER MIX (MAY 1-AUG.15)

GERMAN MILLET · · · · · SETARIA ITALICA · · · · · 5 LBS / ACRE
BROWNTOP MILLET · · · UROCHLOA RAMOSA · · · 5 LBS / ACRE

FERTILIZER	500 LBS / ACRE
LIMESTONE · · · · · · · · · · · · · · · · · · ·	4000 LBS / ACRE

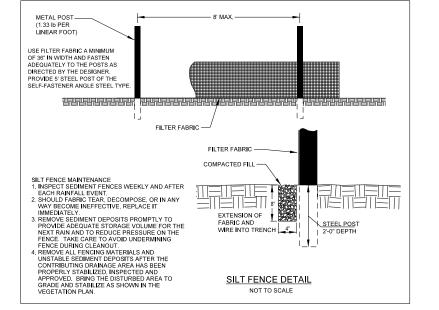
FERTILIZER SHALL BE 10-20-20 ANALYSIS. UPON WRITTEN APPROVAL OF THE SITE SUPERVISOR, A DIFFERENT ANALYSIS OF FERTILIZER MAY BE USED PROVIDED THE 1-2-2 RATIO IS MAINTAINED AND THE RATE OF APPLICATION ADJUSTED TO PROVIDE THE SAME AMOUNT OF PLANT FOOD AS A 10-20-20 ANALYSIS.

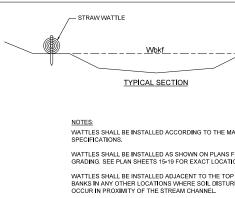
PERMANENT SEED MIX

THE CONTRACTOR SHALL UTILIZE THE FOLLOWING SEED MIX AND FERTILIZER SPECIFICATION IN ALL AREAS INSIDE THE RIPARIAN BUFFER ZONES, INCLUDING THE STREAM BANKS:

FERTILIZER AND LIMESTONE SHALL BE APPLIED AT THE RATE OF 500 LBS / ACRE AND 4000 LBS / ACRE, RESPECTIVELY. FERTILIZER SHALL BE 10-20-20 ANALYSIS. UPON WRITTEN APPROVAL OF THE DESIGN REPRESENTATIVE, A DIFFERENT ANALYSIS OF FERTILIZER MAY BE USED BASED ON SOIL TESTING RESULTS AND AS APPROVED BY THE DESIGN REPRESENTATIVE.

SUMMER MIX (MAY 15 - AUGUST 15)

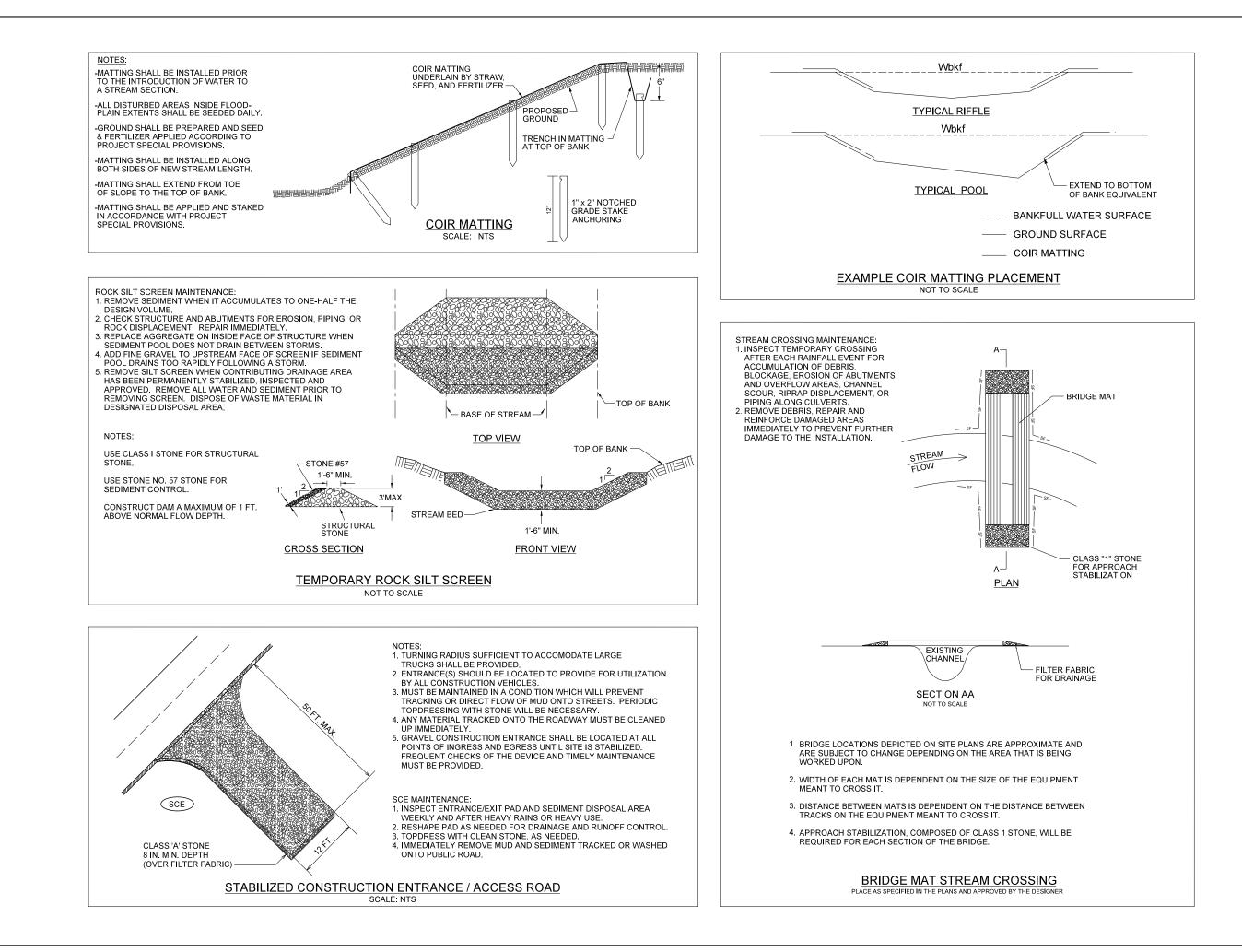

SPECIES	% OF MIX
ORCHARDGRASS – DACTYLIS GLOMERATA	5
BLUESTEM – ANDROPOGON GLOMERATUS	5
VIRGINIA WILDRYE ELYMUS VIRGINICUS	5
RIVER OATS CHASMANTHIUM LATIFOLIUM	5
PURPLE LOVE GRASS – ERAGROSTIS SPECTABILIS	5 5
DEERTONGUE – PANICUM CLANDESTINUM	25
SWITCHGRASS PANICUM VIRGATUM	25
PEARL MILLET PENNISETUM GLAUCOMA	25
TOTALS	100


WINTER MIX (AUGUST 15 -- MAY 15)

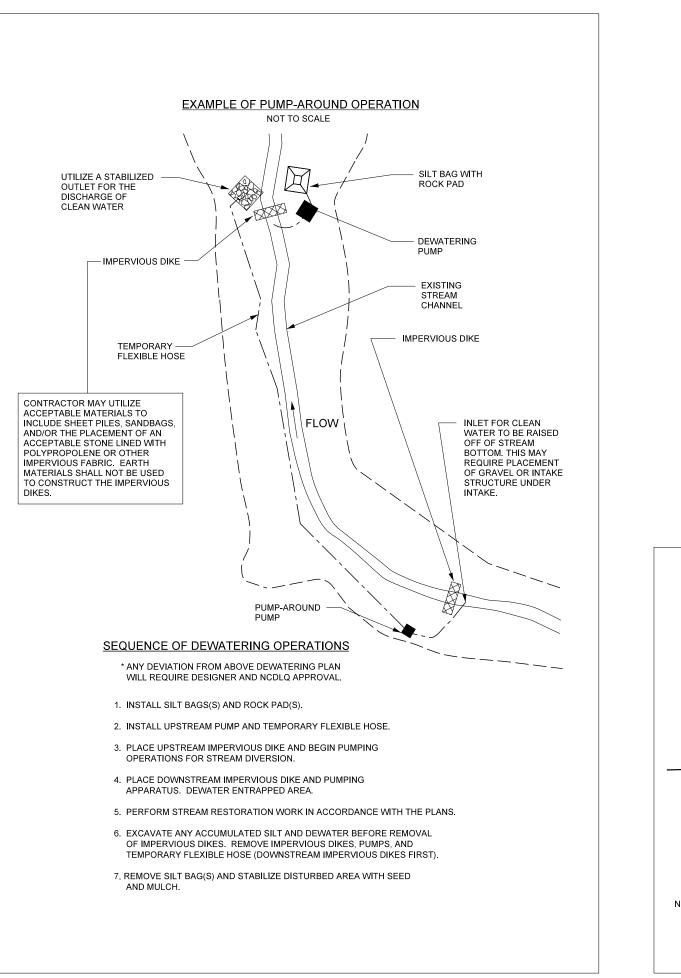
	APPLICATI
SPECIES	% OF MIX
ORCHARDGRASS – DACTYLIS GLOMERATA	5
BLUESTEM – ANDROPOGON GLOMERATUS	5
VIRGINIA WILDRYE ELYMUS VIRGINICUS	5
RIVER OATS - CHASMANTHIUM LATIFOLIUM	5
PURPLE LOVE GRASS ERAGROSTIS SPECTABILI	S 5
DEERTONGUE - DICHANTHELIUM CLANDESTINUM	25
SWITCHGRASS – PANICUM VIRGATUM	25
RYE GRAIN SECALE CEREALE	25
TOTALS	100

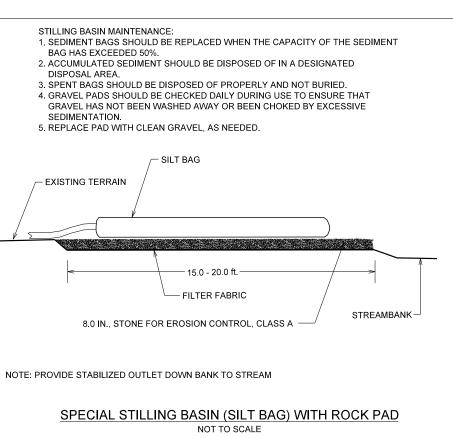
STOCKPILED SILT FENCE NOTES: STOCKPILE LOCATIONS DEPICTED ON SITE PLANS ARE APPROXIMATE AND ARE SUBJECT TO CHANGE AT THE DISCRETION OF THE DESIGN REPRESENTATIVE. TEMPORARY SEEDING MUST BE APPLIED TO STOCKPILES IF NOT RELOCATED WITHIN 7 DAYS. ALL STOCKPILES SHALL BE WITHIN LIMITS OF DISTURBANCE. SILT FENCE SHALL BE INSTALLED DOWN GRADIENT OF ALL STOCK-PILES. ANY STOCKPILE LOCATED BETWEEN BOTH THE EXISTING AND PROPOSED STREAM CENTERLINES WILL REQUIRE SILT FENCE TO BE INSTALLED COMPLETELY AROUND THE STOCKPILE. STOCKPILE DETAIL

NOT TO SCALE



STRAW WATTLE NOT TO SCALE


	APROVED
	MAY 2012 JUNE 2012 SEPT 2012 BATE
	A PRELIMINARY DESIGN-SUBMITTED WITH MITIGATION PLAN Mathematical m
	Enliancement
	ENGINEERS • PLANNERS • SCIENTISTS 4601SX FORKS ROAD RALEIGH, NORTH CAROLINA 27609
STRAW WATTLE WOODEN STAKE NANUFACTURERS FOLLOWING CHANNEL IONS. P OF THE STREAM RBANCE WILL	JACOB'S LADDER STREAM MITIGATION PROJECT CHINA GROVE, ROWAN COUNTY, NORTH CAROLINA
	DATE: MAY 2012 SCALE: NTS SEDIMENTATION
	AND EROSION CONTROL PLAN SHEET 20 OF 23


APPLICATION RATE (IN MIX) LBS / ACRE 1.5 1.5 7.5 7.5 7.5

APPLICATION RATE (IN MIX) LBS / ACRE 1.5 1.5 1.5 1.5 1.5 7.5

CHINA GROVE, ROWAN COUNTY, NORTH CAROLINA 4601 SIX FORKS ROAD 4601 SIX FORKS ROAD

SEQUENCE OF CONSTRUCTION:

THE CONTRACTOR IS RESPONSIBLE FOR FOLLOWING THE SEQUENCE OF CONSTRUCTION IN ACCORDANCE WITH THE PLANS AND THE FOLLOWING PROVISIONS, AS DIRECTED BY THE DESIGNER. CONSTRUCTION SHALL PROCEED IN THE SPECIFIED MANNER UNLESS OTHERWISE DIRECTED OR APPROVED BY THE DESIGNER. THE FOLLOWING PROVISIONS, ALONG WITH THE INSTRUCTIONS CONTAINED IN THE PLANS, CONSTITUTE THE SEQUENCE OF CONSTRUCTION.

GENERAL SITE NOTES

- I. THE CONTRACTOR SHALL ONLY CONDUCT STREAM WORK, INCLUDING ALL IN-STREAM STRUCTURES, GRADING, STABILIZATION MEASURES, AND SEEDING, MULCHING, AND MATTING WORK, ON A SECTION OF STREAM THAT SHALL BE ENTIRELY COMPLETED WITHIN A SINGLE DAY. EACH SECTION OF COMPLETED STREAM MUST BE STABILIZED AND MATTED BEFORE FLOW CAN BE RETURNED INTO THE CHANNEL
- II. IF APPROVED BY THE DESIGNER, THE CONTRACTOR MAY WORK SIMULTANEOUSLY ON MORE THAN ONE PHASE OR CHANGE THE ORDER OF PHASES 2-4. III. WHEN WORKING IN STREAMS WITH NO ACTIVE FLOW THE CONTRACTOR IS REQUIRED TO HAVE
- APPROPRIATELY SIZED PUMPS AND MATERIALS TO INSTALL AND MAINTAIN A TEMPORARY STREAM DIVERSION IN ANTICIPATION OF PENDING STORM EVENTS, WORKING IN A DRY CHANNEL DOES NOT PRECLUDE THE CONTRACTOR FROM HAVING TO COMPLY WITH NOTE I ABOVE.

PHASE 1: INITIAL SITE PREPARATION

- A. IDENTIFY PROJECT BOUNDARY, LIMITS OF DISTURBANCE, SENSITIVE AREAS, STAGING AREAS, STABILIZED ENTRANCES. AND ACCESS POINTS WITH THE DESIGNER.
- B. CONSTRUCT ENTRANCES AND STAGING AREAS AND THEIR ASSOCIATED SEDIMENT AND EROSION CONTROL DEVICES IN A MANNER TO SUPPORT EXECUTION OF THE STREAM RESTORATION IN PHASES AS INDICATED IN THE PLANS AND AS DIRECTED BY THE DESIGNER.

- PHASE 2: REACH T1 STA. 10+00 TO STA. 34+62 A. COMPLETE STREAM RESTORATION IN ACCORDANCE WITH THE FOLLOWING PROCEDURES:
 - i. CLEAR VEGETATION AS NEEDED TO INSTALL SEDIMENT AND EROSION CONTROL MEASURES. INSTALL SEDIMENT AND EROSION CONTROL MEASURES ALONG EXISTING CHANNEL AS DEPICTED ON THE PLANS.
 - II. CONDUCT CLEARING NECESSARY TO COMPLETE CHANNEL WORK, PROTECTING EXISTING TREES WHEREVER POSSIBLE OR AS INDICATED BY THE DESIGNER.
 - III. ESTABLISH AN ISOLATED WORK AREA BY INSTALLING IMPERVIOUS DIKES AND TEMPORARY STREAM DIVERSION AND DIVERT STREAM FLOWS AROUND THE DESIGNATED WORK AREA (LENGTH OF ISOLATED WORK AREA IS LEFT TO THE DISCRETION OF THE CONTRACTOR).
 - IV. COMPLETE CHANNEL GRADING AS DIRECTED IN THE PLANS. INSTALL ANY BANK
 - STABILIZATION TREATMENTS AND IN-STREAM STRUCTURES
 - v. SEED AND MULCH COMPLETED WORK AREAS.

PHASE 3 REACH T2 STA 99+75 TO STA 121+60

- A. COMPLETE STREAM ENHANCEMENT-I FROM STA. 99+75 TO STA. 107+75 IN ACCORDANCE WITH PROCEDURES ESTABLISHED IN PHASE 2A.
- B. COMPLETE STREAM RESTORATION FROM STA. 107+75 TO STA. 121+60 IN ACCORDANCE WITH PROCEDURES ESTABLISHED IN PHASE 2A.

PHASE 4: T1A STA. 40+00 TO STA. 59+44

- A. COMPLETE STREAM ENHANCEMENT-I FROM STA. 50+00 TO STA. 53+06 IN ACCORDANCE WITH PROCEDURES ESTABLISHED IN PHASE 2A.
- B. COMPLETE STREAM ENHANCEMENT-II FROM STA. 53+06 TO STA. 54+46 IN ACCORDANCE WITH PROCEDURES ESTABLISHED IN PHASE 2A.
- C. COMPLETE STREAM RESTORATION FROM STA. 54+46 TO STA. 59+44 IN ACCORDANCE WITH PROCEDURES ESTABLISHED IN PHASE 2A.

PHASE 5: RIPARIAN BUFFER PLANTING

- A. PHASE 6 CAN BE INITIATED AFTER THE STREAM WORK IS COMPLETED IN EACH SECTION OF THE PROJECT
- B. PLANTS SHOULD BE PLANTED DURING THE DORMANT SEASON (OCTOBER 20 APRIL 13). C. PREPARE AND PLANT BANK AND RIPARIAN VEGETATION IN ACCORDANCE WITH PLAN
- SHEET 12 AND AS DIRECTED BY THE DESIGNER

PHASE 6: COMPLETION OF PROJECT SITE

A. REMOVE ALL REMAINING WASTE MATERIALS AND RESTORE THE REMAINING STAGING AND STOCKPILING AREAS AND CONSTRUCTION ENTRANCES TO THEIR PRIOR CONDITION. REMOVE TEMPORARY CROSSINGS AND INSTALL BANK STABILIZATION TREATMENTS, AND PLANT, SEED AND MULCH DISTURBED AREAS. SEED AND MULCH ALL DISTURBED AREAS UTILIZING THE SEED/MULCH MIXES SPECIFIED IN THE PLANS.

GROUND STAB	LIZATION
SITE AREA DESCRIPTION	STABILIZATION TIME FRAME
PERIMETER DIKES, SWALES, DITCHES AND SLOPES	7 DAYS
HIGH QUALITY WATER (HQW) ZONES	7 DAYS
SLOPES STEEPER THAN 3:1	7 DAYS
SLOPES 3:1 OR FLATTER	7 DAYS
ALL OTHER AREAS WITH SLOPES FLATTER THAN 4:1	7 DAYS
NOTES: 1. ALL DISTURBED AREAS INSIDE FLO SHALL BE SEEDED DAILY. 2. ALL DISTURBED AREAS OUTSIDE O SHALL BE SEEDED WITHIN 7 DAYS.	

Soil Amendments:

Due to erosion caused by surrounding agricultural activities, many areas within the limits of disturbance currently contain unproductive soils with low organic content. Many of these areas are characterized by rill and sheet erosion, exposing inorganic soils. Other areas where Priority 2 restoration will occur will expose these unproductive soils to the surface. In order to ensure appropriate growing media for furnished seed mixes as well as trees and shrubs that will be planted as part of the restoration plan, furnished topsoil or organic amendments will be required on this project at the direction of the designer.

<u>Furnished Topsoil</u>: Furnished topsoil shall be natural, friable surface soil uniform in color and texture. Topsoil shall have an organic content between 3 and 10 percent by weight. Furnished topsoil shall have a corrected pH value of not less than 6 nor more than 7.5. Textural analysis (by weight) shall be as follows: Sand (2.0 to 0.050mm) 20-75%, Silt (0.05 to 0.002mm) 10-60%, Clay (less than 0.002mm) 5-30%.

Furnished Compost: Furnished compost can be used to amend the soil. It should be mixed with existing inorganic sub-soils to enhance soil texture and minimize the potential for soil mobilization. Furnished compost should meet the requirements in the table below:

Parameter	Unit Measure	Product Ra
pH	pH units	7.0-8.7
Soluble Salts	mmhos per centimeter	2.0-5.0
Bulk Density	lbs per cubic yard	900-1,000
Moisture Content	% wet wt basis	45%-55%
Organic Matter Content	% dry wt basis	70%-80%
Particle Size	inches	3/8 minus
Growth Screening	% germination	100%
Stability Rating	Mature-Very Mature	Very Matur
. 0		,

Biosolids Compost (Class A): Type A biosolids can be used with the permission of NC DENR Division of Water Quality. They cannot be applied within 25 feet of the top of bank of any perennial or intermittent stream. This material must be mechanically mixed with existing inorganic soils to minimized the potential for runoff

NOTES:

- 1. THE LENGTH OF STREAM THAT IS ISOLATED AS A DAILY WORK AREA IS LEFT TO CONTRACTOR'S DISCRETION IN ACCORDANCE WITH THE FOLLOWING PROVISIONS. IT IS THE INTENT OF THIS CONTRACT THAT
- A. ALL PROJECT OPERATIONS WILL COMPLY WITH THE PROVIDED SEDIMENT AND EROSION CONTROL PLAN.
- B AT THE END OF EACH WORK DAY, EACH PORTION OF STREAM MUST BE A COMPLETED WORK PRODUCT, I.E. ALL BANK AND CHANNEL MODIFICATIONS INCLUDING EXCAVATION, GRADING, FILL, AND ALL STABILIZATION TREATMENTS (WITH THE EXCEPTION OF LIVE STAKING. WHICH MAY BE DEFERRED UNTIL ALL BANK AND CHANNEL WORK IS COMPLETED) MUST BE FINISHED AS CALLED FOR IN THE PLANS AND AS DIRECTED BY THE DESIGNER.
- C. DUE TO THE ANTICIPATED DURATION AND SEQUENCE OF THE CONS-TRUCTION ACTIVITIES. THE CONTRACTOR IS REQUIRED TO MINIMIZE AS MUCH AS POSSIBLE, THE AMOUNT OF THE AREA THAT IS DISTURBED AT ONE TIME.
- 2. THE CONTRACTOR SHALL EXERCISE EVERY REASONABLE PRECAUTION THROUGHOUT THE CONSTRUCTION OF THE PROJECT TO PREVENT EROSION AND SEDIMENTATION. EROSION CONTROL MEASURES SHALL BE INSTALLED AND MAINTAINED IN ACCORDANCE WITH THE PROJECT PLANS, NORTH CAROLINA SEDIMENT AND EROSION CONTROL GUIDELINES AND AS DIRECTED BY THE DESIGNER
- 3. THE CONTRACTOR SHALL ONLY CONDUCT STREAM WORK, INCLUDING ALL IN-STREAM STRUCTURES, GRADING, STABILIZATION MEASURES, AND SEEDING AND MULCHING WORK, ON A SECTION OF STREAM THAT CAN BE ENTIRELY COMPLETED WITHIN A SINGLE DAY.
- 4. ALL EXCAVATION SHALL BE PERFORMED IN DRY OR ISOLATED SECTIONS OF THE CHANNEL.
- 5. ALL EXCAVATED MATERIAL SHALL BE STOCKPILED WITHIN THE LIMITS OF DISTURBANCE FOR LATER USE AS EMBANKMENT MATERIAL OR DISPOSAL. THE CONTRACTOR IS RESPONSIBLE FOR INSTALLING APPROPRIATE STABILIZATION MEASURES AROUND THE STOCKPILE AREA(S) TO PREVENT EROSION AND SEDIMENTATION
- 6. A TEMPORARY PUMP-AROUND SHALL BE UTILIZED BY THE CONTRACTOR IN ALL PORTIONS OF THE STREAM TO DIVERT FLOW FROM AND DEWATER THE DESIGNATED AREA IN ORDER TO WORK, THE PUMP-AROUND USED BY THE CONTRACTOR SHALL MEET ALL REQUIREMENTS SPECIFIED IN THESE PLANS. THE PUMP-AROUND SHALL BE INSTALLED AND REMOVED IN ACCORDANCE WITH THE MANUFACTURER'S GUIDELINES. TWENTY-FOUR (24) HOURS PRIOR TO THE INITIATION OF PUMP-AROUND ACTIVITIES, THE CONTRACTOR SHALL MEASURE THE APPROXIMATE FLOW RATE IN THE EXISTING STREAM AT THE PUMP-AROUND LOCATION. THE FLOW RATE SHALL BE SUBMITTED TO THE DESIGNER FOR APPROVAL. THE CONTRACTOR SHALL, THEREAFTER, UTILIZE A PUMP(S) SUFFICIENT TO ACCOMODATE 120% (1.2 TIMES) THE APPROVED FLOW RATE.

- BY STORM FLOWS.
- IMMEDIATE SEDIMENT/EROSION CONTROL.
- BEEN STABILIZED
- APPROVAL OF THE DESIGN REPRESENTATIVE.
- OR PERMANENT SPOIL AND TOPSOIL PILES.
- TO THE EXTENT PRACTICAL

t Range

000

lature

7. IN THE EVENT OF A STORM, THE CONTRACTOR WILL BE RESPONSIBLE FOR REMOVAL OR PROTECTION OF ANY EQUIPMENT. TOOLS, MATERIALS OR OTHER ITEMS NEEDED TO COMPLETE THE WORK THAT COULD BE AFFECTED

8. AFTER THE STREAM CHANNEL IS DEWATERED AND INITIAL STREAM GRADING CALLED FOR IN THE PLANS IS COMPLETED. THE CONTRACTOR SHALL IMMEDIATELY INSTALL APPROPRIATE STABILIZATION MATERIALS AS CALLED FOR IN THE PLANS TO STABILIZE SLOPES AND PROVIDE

9. WITH THE EXCEPTION OF STRAW WATTLES, EACH SEDIMENT CONTROL DEVICE WILL BE REMOVED AFTER ALL WORK IN THE CORRESPONDING CONSTRUCTION PHASE HAS BEEN COMPLETED AND THE AREAS HAVE

10. THE CONSTRUCTION ENTRANCES AND STAGING AREAS IDENTIFIED ON THE PLANS PROVIDE THE ONLY ACCESS POINTS INTO THE LIMITS OF DISTURBANCE. NO ADDITIONAL ACCESS POINTS SHALL BE USED WITHOUT

11. SILT FENCE SHALL BE INSTALLED ON THE LOW SIDE OF ANY TEMPORARY

12. ALL DISTURBED SOILS WILL BE SEEDED FOR VEGETATIVE STABILIZATION IMMEDIATELY AFTER DISTURBANCE ACTIVITIES. FOLLOWING THE GUIDELINES DESCRIBED ON SHEET 20 OF THESE PLANS.

13. BRIDGE MATS WILL BE USED FOR ALL STREAM CROSSINGS. SUGGESTED LOCATIONS FOR THE CROSSINGS ARE SHOWN ON THE PLANS. HOWEVER, THE LOCATIONS CAN BE MODIFIED UPON CONSULTATION WITH THE DESIGNER. THE NUMBER OF CROSSING LOCATIONS SHOULD BE MINIMIZED

14. THE CONSTRUCTION MANAGER AND EROSION CONTROL CONTACT FOR THIS SITE IS TIM MORRIS. OFFICE PHONE - 919-783-9214 CELL PHONE - 919-793-6886

SCAL	DATI			A	PRELIMINARY DESIGN - SUBMITTED WITH MITIGATION PLAN	MAY 2012
E: N				8	SUBMITTED FOR LAND QUALITY PERMIT	JUNE 2012
		ASSOCIATES OF NC		U	EDITS PER IRT COMMENTS	SEPT 2012
	SIREAM MILIGATION PROJECT	ENGINEERS • PLANNERS • SCIENTISTS				
			Honewstern			
T 1/		PALEICH NORTH CAPOLINA 27609	Financement	SYM.	DESCRIPTION	DATE APPROVED
			PROGRAM		REVISIONS	